
Exercises on Statics and Rotational Dynamics

Exercise 1.1
Jack, mass 50, Kg and Jill, mass 30 Kg, are sitting on a massless teeter-totter. Jack
is 3 meters to the left of the fulcrum. How far away is Jill from the fulcrum?

Since the teeter-totter is not rotating (or moving), the net torque about any
point equals zero. Let’s take the fulcrum as the point to evaluate the torque. Jill’s
weight produces a clockwise torque about the fulcrum equal to 30gx, where g is the
acceleration due to gravity. Jack’s weight produces a counter-clockwise torque about
the fulcrum equal to 50(3)g about the fulcrum. Since the net torque must be zero,
the clockwise and counter-clockwise torques must balance:

3(50) = 30x

x =
150

30
x = 5 meters

Note that the calculation of the torques are easy in this case, since the force is per-
pendicular to the radius vector.

Exercise 1.2
A box, of mass 40 Kg, is placed at the end of a uniform plank. The plank has a mass
of 80 Kg and a length of 10 meters. Where should the plank (plus box) be placed so
that it balances on sharp fulcrum? That is, what is x in the figure?

Since the plank (plus box) is stationary, the net torque about any axis must be
zero. Let’s choose the fulcrum as the point to evaluate the net torque. The box
produces a counter-clockwise torque about the fulcrum of magnitude 40x. We can
treat the plank as if all the mass is located at the center, that is a mass of 80 Kg
located at the center. Since the center of the plank is 5− x meters from the fulcrum,
the plank produces a clockwise torque about the fulcrum of magnitude 80(5−x). Since
the net torque must be zero, the clockwise and counter-clockwise torques balance:

40x = 80(5− x)

40x = 400− 80x

x = 3.333 meters
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As in the last exercise, the torques were easy to calculate since the forces are perpen-
dicular to the radius vectors.

Exercise 1.3
Consider the following two vectors:

~A: 5 units at 37◦ North of East

~B: 10 units at 37◦ North of West

Find ~A× ~B.

There are two ways to calculate the cross product: by using the unit vectors, or as
| ~A|| ~B|sinθ. In the latter case, the direction is determined using the right hand rule.

In terms of the unit vectors, ~A = 4̂i+ 3ĵ, and ~B = −8̂i+ 6ĵ. The cross product can
be calculated using the determinant as shown in the figures page or

~A× ~B = | ~A|| ~B|sinθ
= 5(10)sin(106◦)k̂

= 48k̂

where k̂ is a unit vector in the ”z-direction”. Note that ~B × ~A = −48k̂.

Exercise 1.4
You want to build a sign that will hang at the end of a long rod. The sign has a
weight of 50 pounds. The rod has a weight of 20 pounds and a length of 8 feet. One
end of the rod is attached to the wall, and the other end is held up by a rope. The
tension in the rope is labeled ~T in the figure. Find the tension T in the rope and the
force ~F that the wall exerts on the rod.

Consider the forces on the rod. If the rod is in static equilibrium, then two
conditions must be met: The sum of the forces on the rod must add up to
zero, and the net torque about any axis must also be zero.

Let’s start with the torque requirement first. We are free to choose any axis as
our axis for calculating the torque. Let’s choose the point ”O” in the figure, which is
where the force ~F acts. The net torque about the point ”O” is given by
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Net torque about O = 0(F )− 4(20)− 8(50) + 8Tsin(37◦) (1)

The force ~F does not produce any torque (twisting force) about the point ”O” because
it acts at this point. (i.e. r = 0). The 20 pound force of the rod and the 50 pound
force of the sign produce a clockwise twist about ”O”, so the signs are negative. The
tension T produces a counter-clockwise twist and has a positive sign. Since the Net
Torque must be zero, we have:

0 = −4(20)− 8(50) + 8Tsin(37◦)

T = 100 pounds

To find the force ~F , we use the condition that the net force on the rod equals zero.
It is easiest to express all the forces in terms of their components, or equivalently in
terms of the unit vectors. Using î and ĵ as defined in the figure, the vector ~T is equal
to ~T = −100cos(37◦)̂i + 100sin(37◦)ĵ. Thus, ~T = −80̂i + 60ĵ pounds. Setting the
sum of the forces equal to zero gives:

0 = ~F − 20ĵ − 50ĵ + (−80̂i+ 60ĵ)

~F = (80̂i+ 10ĵ) pounds

The magnitude of ~F equals |~F | =
√

802 + 102 ≈ 80.6 pounds, and is directed at an

angle θ = tan−1(10/80) ≈ 7.1◦ north of east. Note that the force ~F is not directed
along the rod.

Exercise 1.5
Brandon needs to climb up a massless ladder that is against a wall. Brandon’s mass
is m, the ladder has a length L, and makes an angle of θ with the ground. The
coefficient of static friction between the ladder and the ground is µ, and there is no
friction between the ladder and the wall. How far up the ladder, the distance d in the
figure, can Brandon climb before the bottom of the ladder slips and Brandon crashes
to the ground?

We first need to identify all the forces on the ladder. Since the ladder is massless,
there is no downward force of gravity located at its center of mass. Brandon exerts
a force of mg located a distance d from the base of the ladder. The ground exerts a
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force on the ladder, which we break up into two ”components”. One component is
perpendicular to the ground, which we call ~N , and the other is parallel to the ground
and is the force of friction, ~f . The last force is the force that the wall exerts on the
ladder, labeled ~F in the figure. Since there is no friction between the ladder and the
wall, ~F must be perpendicular to the wall.

It is easiest to first satisfy the condition that the net force on the ladder equals
zero. In the vertical direction N must equal mg: N = mg. In the horizontal direction
F must equal f : F = f . Now for the torques. It is easiest to choose the base of the
ladder as our axis, since there are two components that act there. With this choice:

Torque about ladder base = 0(N) + 0(f)−mgd sinα + FL sinθ

where the angle α = 90◦ − θ is the angle between m~g and the ladder. N and f are
multiplied by zero, since they act at the location of the axis. Since the net torque
must be zero, we have:

0 = −mgd cosθ + fL sinθ

mgd cosθ = fL sinθ

mgd = fL tanθ

The maximum value for d is determined by the maximum value for the frictional force
f . Since fmax = µN = µmg we have

mgdmax = fmaxL tanθ

mgdmax = µmgL tanθ

dmax = µL tanθ

Note that if µ tanθ is greater than one, then dmax > L and Brandon can climb up to
the top of the ladder without it slipping.

Exercise 1.6
Prove the following statement: If the sum of the forces equals zero and the net torque
about one axis equals zero, then the net torque about any axis is also equal to zero.
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Let’s prove the statement for three forces, which can be generalized to any number
of forces. Suppose three forces act on an object at three different locations. We label
the forces as ~F1, ~F2, and ~F3. If the sum of the forces are equal to zero, this means
that

~F1 + ~F2 + ~F3 = 0
3∑
i=1

~Fi = 0

Let the net torque about the point ”A” equal zero. If we let ~Ri be the displacement
vector from ”A” to the location of force ”i”, then the net torque about ”A” equals

~τnet(A) = ~R1 × ~F1 + ~R2 × ~F2 + ~R3 × ~F3

~τnet(A) =
3∑
i=1

~Ri × ~Fi

Let ”O” be another point. Let ~ri be the displacement vector from ”O” to the location
of force ”i”. The torque about the point ”O” is

~τnet(O) =
3∑
i=1

~ri × ~Fi

If we let ~rA be the vector from ”O” to ”A”, then

~ri = ~rA + ~Ri

Substituting this relationship into the torque equation gives:

~τnet(O) =
3∑
i=1

(~rA + ~Ri)× ~Fi

~τnet(O) =
3∑
i=1

~rA × ~Fi +
3∑
i=1

(~Ri × ~Fi)

~τnet(O) = ~rA ×
3∑
i=1

~Fi +
3∑
i=1

(~Ri × ~Fi)

~τnet(O) = ~rA × 0 + 0

~τnet(O) = 0
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The first zero is because the sum of the forces equals zero, (
∑ ~Fi = 0), and the second

zero is because the sum of the torques about ”A” equals zero.
This is a nice result. If the sum of the forces equals zero, then we only need

to require that the sum of the torques about one point equals zero. If this is satis-
fied, then we know that the sum of the torques equals zero about any point we choose.

Exercise 1.7
Dave wants to hang a door that has a mass m and a width L. The door will connect
to the wall at two hinges, which are separated by a distance d as shown in the figure.
What are the maximum forces that the top hinge must exert on the door?

Lets identify all the forces on the door: The weight of the door, which can be
considered as acting at the center of gravity of the door; and the forces at each hinge.
The force at each hinge can be broken up into a vertical component and a horizontal
component. Since the sum of the forces must add up to zero, the sum of the vertical
components that the hinges exert must add up to mg. If we let WB be the vertical
force that the bottom hinge exerts on the door, then mg−WB is the vertical force that
the top hinge exerts on the door. (The sum of these two forces must be mg). Since
the only horizontal forces exerted on the door are due to the hinges, the horizontal
force for the top hinge must be opposite in direction and equal in magnitude to the
horizontal force for the bottom hinge. We label this force F in the figure.

Now for the net torque. If we choose as our axis the location of the top hinge, we
have

Torque about top hinge = −mgL
2

+ Fd

Note that the torque about the top hinge due to WB is zero, since ~WB points directly
at the top hinge. From this equation we can solve for the horizontal forces on the
hinges:

F =
mgL

2d

The largest that the vertical components can be is mg.

Exercise 2.1
What is the angular velocity vector of the earth?
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The angular velocity equals the number of radians/time, so

ω =
2π radians

one day

=
2π

24(3600) sec

≈ 7.27× 10−5 rad/sec

This is the magnitude of the angular velocity, but what is the direction? Since the
sun sets in the west, the direction of ~ω is from the south to the north pole.

Exercise 2.2
What is the angular acceleration of the earth about its axis?

The angular acceleration is the change in the angular velocity,

~α =
d~ω

dt

Since the earth’s angular velocity vector does not change hardly at all (each day has
nearly the same duration), the angular acceleration of the earth is zero. Actually, ~ω
will change very slightly due to atmospheric changes, but ~α is essentially zero.

Exercise 2.3
The latitude of Los Angeles is around 34◦ North of the equator. What is the speed
of a person in Los Angeles due to the earth’s rotation about its axis?

We can solve this by using ~v = ~r× ~ω. ~ω points towards the north pole. The angle
between ~r and the north pole is equal to 90◦ − 34◦ = 56◦. Since the radius of the
earth is approximately 6.37× 106 meters,

|~v| = |~r||~ω|sin56◦

≈ (6.37× 106)(7.27× 10−5)sin56◦

≈ 384 m/s

Note, that if you are at the north pole, θ = 0, so your speed about the axis is 0.
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Exercise 2.4
Bugsy spins the lottery wheel counter-clockwise until it is rotating at 2 revolu-
tions/sec. The wheel is a clockface with 12 equal divisions labeled 1 → 12 going
clockwise. When the 12 is at the top, rotating at 2 revolutions/sec, he lets it slow
down on its own. It takes 44.2 seconds to slow down. Assuming that the angular
acceleration is constant, what two numbers does it land between?

The initial angular velocity is ω0 = 2(2π) = 4π radians/sec. Since it takes 44.2 sec-
onds to slow down, the angular acceleration is α = 4π/44.2 = π/11.05 ≈ 0.284 r/s2.
If the angular acceleration is constant, then the angle that is swept out is

θ =
α

2
t2 + ω0t+ θ0

=
π

22.1
44.22 + 4π(44.2)

= (265.2)π radians

The number of revolutions that the wheel turns before it stops is (265.2)π/(2π) =
132.6 revolutions. So the wheel only completes the last 0.6 of a revolution. Multiply-
ing by 12 gives 0.6(12) = 7.2. Thus, the wheel stops between 7 and 8.

Exercise 2.5
What is the rotational inertia Icm for a uniform disk about an axis through the center
and perpendicular to the plane of the disk? Let the radius of the disk be R and it
mass M .

The easiest way to find Icm for the disk is to divide the disk up into concentric
rings. Consider a ring of radius r and width ∆r. The rotational inertial for this
ring, ∆I, about an axis through its center is ∆I = ∆m r2, where ∆m is the mass
of the ring. If M is the total mass of the disk, then the mass of the ring is equal to
∆m = M∆A/(πR2) where ∆A is the area of the ring. The area of the ring is given
by: ∆A = 2πr ∆r, since 2πr is the circumference of the ring and ∆r is its thickness.
So we have

∆I = M
2πr ∆r

πR2
r2

We can add up all the rings by integrating from r = 0 to r = R:
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Icm =
∑

∆I

=
∫ R

0
M

2πr

πR2
r2dr

=
2M

R2

∫ R

0
r3dr

=
MR2

2

Exercise 2.6
What is the rotational inertia for a thin ring of radius R and mass M for rotation
about an axis parallel to the ring and through its center (see the figure)?

We need to integrate around the ring. Divide the ring up into small pieces that
subtend an angle of ∆θ. Consider a piece that is an angle θ from the axis. The
distance to the axis is R sinθ. Let the mass of the small piece be ∆m. Then the
contribution to the rotational inertia from this small piece is

∆I = ∆m (R sinθ)2

We need to determine ∆m in terms of M and ∆θ. This can be done by using ratios:
(∆m/M) = (∆θ/(2π)), or ∆m = M∆θ/(2π). Thus, we have

Icm =
∑

∆I

=
∑

M
∆θ

2π
R2sin2θ

=
MR2

2π

∫ 2π

0
sin2θdθ

=
MR2

2

Exercise 2.7
Consider the mass-pulley set-up shown in the figure. The block of mass m1 is hanging
by a massless cord. The cord goes over a pulley and is attached to another block of
mass m2. Mass m2 can slide without friction on the top of a horizontal table. The
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pulley is a solid disk with a mass of m and a radius r. What is the acceleration of
the system?

To solve this problem, it is easiest to consider each object one at a time. Let T1

be the tension in the part of the cord attached to m1, and T2 the tension in the part
of the cord attached to m2. The net force on m1 is m1g − T1. The net force must be
the mass times acceleration:

m1g − T1 = m1a

where a is the acceleration of the system. The only force on m2 is T2. So we have

T2 = m2a

Now we need to determine the net torque on the pulley. The cords apply a force
perpendicular to the radius. So T1 produces a torque equal to rT1 clockwise, and
T2 produces a torque equal to rT2 counter-clockwise. Since positive acceleration is a
clockwise rotation, the net torque is rT1 − rT2 which is equal to Iα:

rT1 − rT2 = Iα

The rotational inertial I for a disk rotation about an axis perpendicular to its surface
and through its center is I = mr2/2. If the cord does not slip we have α = a/r.
Substituting these expressions into the equation above, we have

rT1 − rT2 = Iα

rT1 − rT2 =
mr2

2

a

r

T1 − T2 =
m

2
a

The equations for the three objects are

m1g − T1 = m1a

T2 = m2a

T1 − T2 =
m

2
a

Adding the right sides and the left sides gives:
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m1g = (m1 +m2 +
m

2
)a

a =
m1g

m1 +m2 +m/2

Exercise 2.8
A meter stick can pivot at one end. The meter stick is held horizontally to the ground,
and then let go. It swings down. What is the speed of the tip of the meter stick at
the bottom of the swing?

We can use the work-energy theorem to help us solve the problem. The net work
is the change in the kinetic energy. The kinetic energy is the rotational energy about
the pivot point (or axis of rotation). The only force that does work is the force of
gravity, since the force at the pivot point does not ”push” the object any distance:

Wg =
Iend

2
ω2
f −

Iend
2
ω2
i

The work done by gravity, Wg, is mg times the change in the height of the center
of mass. So Wg = mgl/2, where l = 1 m is the length of the stick. The rotational
inertia of a rod with the axis at the end is Iend = ml2/3. Thus, we have

mg
l

2
=

ml2/3

2
ω2
f − 0

ωf =

√
3g

l

The speed of the end of the stick is v = lω, so the speed at the bottom of the swing
is v =

√
3gl.

Exercise 2.9
While in the bathroom, Jerry places a clip of mass m1 at the end of the roll of toilet
paper. The clip falls and the paper unwinds. If we model the toilet paper as a uniform
cylinder of radius r and mass m, what is the acceleration of the clip?
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To solve this problem, it is easiest to consider each object separately. Let the
tension in the hanging paper be labeled T . Then the net force on the clip is m1g−T .
If we assume that the mass of the hanging paper is negligable, then the roll will feel
the same force T pulling it downward. The net torque on the roll of paper is rT . For
m1 we have:

m1g − T = m1a

For the paper roll we have:

rT = Iα

The rotational inertia for a cylinder rotating about its center is I = mr2/2. The
connection between a and α is α = a/r. Substituting into the last equation gives:

rT =
mr2

2

a

r

T =
m

2
a

Combining this equation with the first gives

m1g − T = m1a

m1g −
m

2
a = m1a

a =
m1g

m1 +m/2

Exercise 3.1
A cylindrically symmetric object is rolling without friction down an incline. If the
radius of the object is R and the rotational inertial about the center of mass is Icm,
what is the acceleration of the rolling object down the incline?

This is an excellent example to apply the following physics: The acceleration
of the center of mass equals the net force; the angular acceleration about
the center of mass equals the net torque about the center of mass.
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Lets identify the forces on the object: gravity acting at the center of mass, the
normal force from the incline and the frictional force from the incline. (Actually
the last two forces are really the one force on the object from the incline). We can
break up the force of gravity, m~g, into a component parallel to the plane (mgsinθ)
and one perpendicular to the plane (mgcosθ). Since the object stays on the plane,
N = mgcosθ. The net force down the plane equals mg − f , where f is the frictional
force. The net force equals the mass times the acceleration of the center of mass:

mg sinθ − f = ma

The net torque about the center of mass equals the angular acceleration about the
center of mass. The net torque about the center of mass due to m~g equals zero since
it acts at the center, and the net torque due to ~N equals zero since ~N points towards
the center of mass. The only force that gives non-zero torque is the frictional force
f . Since the moment arm equals r (the radius of the object), we have

rf = Icmα

where Icm is the rotational inertia about the center of mass. If the object rolls without
slipping, α = a/r. Thus, f = (Icmα)/r2. Substituting this expression for f into the
first equation gives:

mg sinθ − Icm
r2
a = ma

Solving for a yields:

a =
g sinθ

1 + Icm
mr2

From this expression, one can see that the critical quantity for determining the ac-
celeration is Icm/(mr

2), which is unitless. For a loop this is 1, for a cylinder it is 1/2,
and for a sphere it is 2/5.

Exercise 3.2
Consider the cylindrical object of exercise 3.1. What is the maximum angle that the
incline can have so that the object does not slip?
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If friction is not large enough, then the object cannot rotate fast enough to keep
up with the translational acceleration. fmax = µmgcosθ, where µ is the coefficient of
static friction and N = mgcosθ. Thus amax is found from

fmaxr =
Icm
r
amax

µmgcosθmax =
Icm
r
amax

amax =
r2

Icm
µmgcosθmax

Substituting amax into the equation of exercise 3.1, gives:

g sinθmax
1 + Icm

mr2

=
r2

Icm
µmgcosθmax

tanθmax = µ(1 +
mr2

I
)

For a hoop, tanθmax = 2µ, for a cylinder tanθmax = 3, and for a sphere, tanθmax =
3.5µ. If θ is larger than these maximum angles, the object will not be able to roll
without slipping. Try it out!

Exercise 3.3
A hoop starts from rest and rolls without slipping down an incline. The center of
the hoop drops a distance h. What is the final translational speed of the hoop at the
bottom of the incline (i.e. after the center of the hoop has dropped a distance h)?

We can use the work-energy theorem to solve this problem, since we are not
interested in the time it takes the hoop to roll down the ramp. The net work done
equals the change in kinetic energy. There are two forces acting: gravity and friction.
The force of gravity down the ramp equals mgsinθ, the force of friction up the ramp
equals f . Therefore, the work done to change translational speed is Wtranslational =
(mgsinθ − f)d where d is the distance traveled. Friction also does positive work in
rotating the hoop. If the hoop rolls without slipping, then friction acts the same
distance d in increasing the rotational kinetic energy. So the total work done in
increasing the energy of motion is
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Wnet = (mgsinθ − f)d+ fd = mgdsinθ = mgh

The net work equals the change in the kinetic energy. The initial K.E. is zero, so we
have:

mgh =
m

2
v2 +

Icm
2
ω2

=
m

2
v2 +

mr2

2
(
v

r
)2

For a hoop, Icm = mr2. If the hoop rolls without slipping then ω = v/r. Carrying
out the algebra gives

mgh =
m

2
v2 +

mr2

2
(
v

r
)2

mgh = mv2

v =
√
gh

It is interesting to note that mgh is the initial potential energy of the system. This
potential energy is converted into kinetic energy (translational plus rotational). That
is, the mechanical energy of the system is conserved! The conservation of mechanical
energy might not have been evident at first, since the force of friction is present.
However, the negative work that friction does in decreasing the translational kinetic
energy equals the positive work it does in increasing the rotational kinetic energy.

Exercise 3.4
Gilligan spins a hula hoop in front of himself and gives it a large initial angular veloc-
ity of ω0. It lands and spins on the floor. Friction propels it forward and at the same
time slows down the rotational speed. Eventually the hoops translational velocity
matches its angular velocity and it rolls without slipping. What is the hoops final
speed?

In this example, the hoops motion is one of translation and rotation. As discussed
in lecture, the essential physics is: The acceleration of the center of mass equals
the net force; the angular acceleration about the center of mass equals the
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net torque about the center of mass.

There are three forces acting on the hoop: m~g, N (the normal force of the floor
on the hoop, and f the frictional force. The only force parallel to the floor is the
force of friction, f . Since the hoop is skiding on the floor, f = µmg, where µ is the
coefficient of kinetic friction. Thus,

f = ma

µmg = ma

a = µg

As long as the hoop skids on the floor, the force of friction will accelerate the hoop.
The velocity of the hoop as a function of time is

v = at = µgt

The angular acceleration about the center of mass equals the net torque about the
center. m~g acts at the center, and ~N points towards the center, so neither of these
forces produces any torque about the center. Only friction exerts a torque about the
center of mass, and is equal to fR where R is the radius of the hoop. Since the net
torque equals Icmα,

fR = mR2α

where Icm = mR2 for the hoop. Since f = µmg, the angular acceleration about the
center of mass is

µmgR = mR2α

α =
µg

R

The frictional torque slows down the angular velocity of the hoop. The angular
velocity ω as a function of time is

ω = ω0 −
µg

R
t
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As time goes on, ω will get smaller and v will increase until v = ωR. When v = ωR
then the hoop will roll without slipping. The time t when this happens is

µgt = ω0 −
µgt

R

t =
ω0R

2µg

Since the final velocity is vf = µgt,

vf = µg(
ω0R

2µg
) =

ω0R

2

This is a rather amazing result. The final speed does not depend on the mass of the
hoop, g, or the coefficient of kinetic friction µ.

Exercise 3.5
An small particle of mass 3 Kg is traveling in the x-y plane. Its velocity is ~v = 5̂i
m/s. When it is at the position (−3, 2), what is the particle’s angular momentum
about the origin?

The angular momentum of a particle about an axis is ~L = ~r × ~p. The magnitude
of the angular momentum is |~L| = rpsinθ = mv(rsinθ). Note that rsinθ is the
”moment arm”, which is 2 m as shown in the figure. So the magnitude of the angluar
momentum is

|~L| = 2(3)5 = 30 Kg m2/s

Since the ”rotation” is clockwise, ~L points into the page.

Exercise 3.6
Lenny, mass 50 Kg, is spinning around on a merry-go-round in his local playground.
The merry-go-round is a disk of mass 60 Kg and a radius of 3 meters. Lenny is
standing on the edge, 3 meters from the center. The initial angular velocity of the
merry-go-round is ω0 = 2 r/s. Suddenly, Lenny jumps off the merry-go-round so fast
that it stops rotating. What is his speed with respect to the ground?
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Since all the forces are internal, so are the torques. Thus angular momentum is
conserved. The angular momentum before Lenny jumps off is the same after he has
jumped off. As a reference point, lets use the center of the merry-go-round The initial
angular momentum is the sum of the angular momentum of the merry-go-round plus
the angular momentum of Lenny about the center of the merry-go-round.

Linitial = Idiskω0 +mR2ω0

=
60

2
32ω0 + (50)32ω0

= 270(2) + 450(2)

= 1440 Kg
m2

s

The angular momentum after Lenny jumps off is also the sum of the angular momen-
tum of the merry-go-round plus that of Lenny. Since the merry-go-round is stationary
it has no angular momentum after Lenny jumps. However, Lenny will have angular
momentum about the center of the merry-go-round equal to ~r×m~v. ~r×m~v is equal
to mv times the moment arm of 3 meters. So

Lfinal = mgr = 50(3)v = 150v

Since there are no external torques, angular momentum is the same before as after
Lenny’s jump:

Lfinal = Linitial

150v = 1440

v = 9.6 m/s

Exercise 3.7
A flat disk of mass m1 and radius r1 is initially rotating with an angular velocity of
ω0. A ring of mass m2 and radius r2 is dropped on the spinning disk. After some
sliding, the two objects rotate coaxially together with a final angular velocity of ωf .
Find an expression for ωf in terms of the other parameters of the system.

Since the only force that the disk feels is due to the ring, and visa-versa, all the
forces acting on the system are internal forces. Thus, the total angular momentum of
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the system is conserved. That means that the final angular momentum must equal
the initial angular momentum. In each case, we have the situation in which a rigid
object is rotating about a fixed axis. Thus, for each case, Ltotal = Itotalω. Initially
only the disk is rotating, so Itotal = Idisk = m1r

2
1/2. After, the ring is also rotating,

so Itotal = Idisk + Iring = m1r
2
1/2 + m2r

2
2. So the equations which result from the

conservation of angular momentum are:

Linitial = Lfinal

I1ω0 = (I1 + I2)ωf
m1

2
r2

1ω0 = (
m1

2
r2

1 +m2r
2
2)ωf

ωf =
m1r

2
1

m1r2
1 + 2m2r2

2

ω0

Exercise 3.8
Vickie has just received a yoyo for her birthday. She lets it unwind as it falls due to
gravity. She is very curious as to what its acceleration is when it unwinds. She has
asked us to help her calculate the yoyo’s acceleration.

The falling yoyo is an object that is translating and rotating. The best way to
analyze this kind of motion is to consider the center of mass. That is: The acceler-
ation of the center of mass equals the net force; the angular acceleration
about the center of mass equals the net torque about the center of mass.

Let T be the tension in the string. There are two forces acting on the yoyo: mg
downward, and T upward. Thus, the net force on the yoyo is mg − T where down is
the positive direction. From Newton’s second law we must have:

mg − T = ma

where a is the acceleration of the center of mass (i.e. the center of the yoyo). The
force of gravity, mg does not produce any torque about the center of mass, since it
acts there. There is a torque about the center of mass due to T : rT . The ”torque”
equation yields:

rT = Icmα
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where α is the angular acceleration about the center of mass. However, a and α are
not independent if the string doesn’t strech. The yoyo unwinds as it falls such that
α = a/r where r is the radius of the inner disk that the string is wound around. So
we have

T =
Icm
r

a

r

=
Icm
r2
a

Substituting into the force equation gives:

mg − Icm
r2
a = ma

a =
g

1 + Icm/(mr2)

Most yoyo’s have a large Icm and a small r2, so their downward acceleration is much
less than g.

Exercise 3.9
Consider the ”ballistic stick” pendulum shown in the figure. A bullet of mass m2 is
initially traveling with a speed of v0 towards a hanging stick that is at rest. The bul-
let penetrates into the bottom of the stick, then the stick (with bullet inside) swings
upward. The stick has a length l and mass m1. The maximum height of that the
bullet (and bottom of stick) rise is h. Express h in terms of the masses of the system
and v0 and g.

We need to treat this problem in two parts. The first part is the collision of the
bullet with the stick. During the collision, angular momentum about the pivot point
is conserved. After the collision, the stick swings up to its maximum height h. During
this part, mechanical energy is conserved.

First part: The angular momentum about the pivot point is the same before as after
the collision. The angular momentum before the collision equals m2v0l. After the
collision, the stick plus bullet swing about the pivot with an initial angular velocity
of ω0. The angular momentum about the pivot point is Iω0, where I is the rotational
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inertial about the pivot point: I = Istick+Imass = m1l
2/3+m2l

2. Angular momentum
conservation yields the following equation:

m2v0l = Iω0

ω0 =
m2v0l

I

Second part: As the stick swings up, mechanical energy is conserved. The initial
energy is rotational kinetic energy, (I/2)ω2

0. The final energy is all gravitation po-
tential energy, which is m1g times the distance that the center of mass of the stick
is raised (h/2) plus m2g times the distance that the bullet is raised (h). Mechanical
energy conservation yields the following equation:

I

2
ω2

0 = m2gh+m1g
h

2
I

2
ω2

0 = (m2 +
m1

2
)gh

Note that if the bullet raises up a distance h, the center of the stick raises up a distance
h/2. The above equations are essentially the work-energy theorem: the change in the
kinetic energy equals the net work done by the gravitational force.

Substuting in to the angular momentum equation for ω0 we have

I

2
(
m2v0l

I
)2 = (m2 +

m1

2
)gh

m2
2v

2
0l

2

2(m1l2/3 +m2l2)
= (m2 +

m1

2
)gh

Here we have used the expression for I about the pivot point, I = m1l
2/3 + m2l

2.
Solving for h we have

h =
m2

2v
2
0

2g(m1/3 +m2)(m2 +m1/2)

Note: the rotational inertial is the sum of the inertial of a rod that rotates about an
end, ml2/3, plus the mass of the bullet times l2: I = m1l

2/3 +m2l
2.
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