should be treated as quantum-mechanical operators. This
implies, for example, that 7, (¢) and I, (# + ¢ ') in (26) are
operators that in general do not commute, so that the cor-
relation function must be redefined in terms of a symme-
trized product 5[ LOL(t+t"Yy+ L+ t’)IZ(t)].
The last two references both show that such a redefinition
does lead in the quantum limit to a corrected Nyquist for-
mula in which kg T is replaced by (37). For a basic discus-
sion of noise and quantum mechanics, the reader is also
referred to Chap. 6 of the monograph by Robinson.”

IX. CONCLUSIONS

Beginning with the appropriate model of a Fermi-Dirac
conduction-electron gas, we have derived the Johnson-Ny-
quist expression for thermal noise inside a metal. This noise
is seen to originate in spontaneous fluctuations of current
that occur when electrons are scattered from occupied mo-
mentum states near the surface of the Fermi sphere into
unoccupied momentum states that are also near the surface
of the Fermi sphere. The unlikely circumstance that Fer-
mi-Dirac and Maxwell-Boltzmann statistics should both
lead to the Johnson-Nyquist formula turns out to be a con-
sequence of the fact that all of the charged particles are
allowed to participate in the Maxwell~Boltzmann picture,
while in the Fermi-Dirac picture only those electrons that
are close to the Fermi surface are allowed to participate.
An externally applied Ohm’s law transport current was
shown not to affect the level of thermal noise.
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Measurements of the transient motion of a simple nonlinear system
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A freely rotating magnet placed above a solenoid and between a set of Helmholtz coils is used to
examine properties of a nonlinear system. Accurate measurements of the angular velocity are
made with a photogate timing device. The period-doubling route to chaos, multiple periodicities,
and the behavior of transient motion are observed and measured.

I. INTRODUCTION

In the past 15 years, the field of nonlinear dynamics and
chaos has grown tremendously. These topics are now start-
ing to be covered in the undergraduate curriculum. Some
properties of nonlinear systems are treated in courses in
classical mechanics, and simple quantitative exercises and
analyses are making their way into classes on computa-
tional physics.! Along with these classroom discussions on
nonlinear systems, various experiments are being intro-
duced into student laboratories.” The purpose of this article
is to describe a simple, inexpensive apparatus, suitable for
the undergraduate laboratory, which is rich in applications
to the study of nonlinear systems.

The apparatus consists of a freely rotating compass nee-
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dle placed above a solenoid and between a set of Helmholtz
coils. The solenoid supplies a constant vertical magnetic
field, while the Helmholtz coils are used to drive the system
with an alternating magnetic field. With the help of a pho-
togate timing device, the angular velocity of the compass
needle is measured for a fixed angle.

A similar system without the vertical magnetic field has
been studied by several authors.’” In these experiments,
data were taken with a pickup coil and a stroboscope. Very
interesting results were obtained in displaying strange at-
tractors,** period doubling,>* and higher multiplicities.**
In our setup, we use a photogate which allows a simple and
accurate measurement of the time evolution of the system.
The time dependence of transient states and the system’s
response to a perturbation, as well as period doubling and
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higher periodicities, can be easily observed. In addition, all
the equipment used in the experiment is inexpensive, and,
in our case, was all found in our stockroom.

II. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. The complete
apparatus was put together from other undergraduate ex-
periments and demonstrations. ’

The magnet and stand is a CENCO (catalog number
78425) magnet, which is designed to measure the declina-
tion of the Earth’s magnetic field. A magnet with a large
magnetic moment-to-mass ratio mounted with minimal
bearing friction is desirable. The CENCO magnet proved
satisfactory and it is wide enough to be used with a photo-
gate time device.

The Helmholtz coils belong to a standard experiment to
measure the electron’s charge-to-mass ratio. The particu-
lar brand used in our case was Uchida Yoko Model TG-13.
The Helmholtz current is supplied by a function generator
from Pasco (Student Function Generator PI-9598). This
function generator is capable of producing a sufficiently
large voltage to drive the compass at a low frequency,
which, in our case, was 1.5 Hz. The voltage across the
Helmbholtz coils was measured on a digital oscilloscope.

A constant magnetic field, which can be oriented at any
angle with respect to the Helmholtz field, is produced by a
solenoid. The current through the solenoid is measured
with a digital ammeter.

To measure the angular velocity of the magnet, a photo-
gate timer was used and connected to an Apple Ile comput-
er via a game port interface (Pasco AI-6575). The photo-
gate timer measures the time the gate is blocked by the
magnet. We refer to this quantity as the blocking time,
which is inversely proportional to the angular velocity.

Hetmhottz coil
Bn 0
Magnet
Photo gate

%

Solenoid ~——1 Helmholtz coil

\
Fig. 1. A schematic of .the experimental setup is shown. The spinning
magnet is placed above a solenoid and between a pair of Helmholtz coils.
The current in the solenoid is direct current, producing a constant vertical
magnetic field. The current in the Helmholtz coils is sinusoidal and drives

the magnet. Two different orientations of the Helmholtz coils, vertical
and horizontal, were used.
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Data were collected and analyzed with the assistance of
“precision timer III” software from Vernier. The photo-
gate was placed such that it recorded the blocking time
when the magnet was around 20° from the vertical. The
software allowed every other pass to be recorded, so we
were able to measure successive blocking times after the
magnet went through 360° of rotation.

There are three experimental quantities that are mea-
sured for a fixed frequency of the driving voltage in the
coils: the peak-to-peak voltage across the Helmholtz coils,
the current through the solenoid, and the blocking time of
the spinning magnet at a particular angle. As will be
shown, the blocking time can be measured to an accuracy
of 0.5%, the current through the solenoid to within 1%,
and the voltage across the coils to the resolution of the
oscilloscope. This accuracy is sufficient to obtain very in-
teresting results about the nonlinear system.

II1. RESULTS

We have examined the response of the system for two
different orientations of the constant magnetic field: per-
pendicular and parallel to the Helmholtz field. For the par-
allel case, the system is approximately described by the
differential equation

16 = — uB, sin @ — 0 + uB, sin O sin o, (1

where 6, labeled in Fig. 1, is the angle between the magnet
and the magnetic field produced by the solenoid, B, is the
strength of the solenoid’s magnetic field at the position of
the magnet, B,, is the amplitude of the oscillating magnetic
field due to the Helmholtz coils, u is the magnitude of the
magnetic moment of the magnet, 7 is the moment of inertia
of the magnet, and 7 is a damping coefficient. Fins made
from tape are attached to the magnet to regulate damping.
B, is proportional to the measured solenoid current and B,
is proportional to the measured Helmholtz voltage. The
magnet is aligned such that the horizontal component of
the Earth’s magnetic field is along its axis of rotation.

When the solenoid field is perpendicular to the Helm-
holtz field, the system is approximately described by

I6 = — uB, sin @ — 7O + uB, cos 8 sin wt, (2)

where the parameters are the same as in Eq. (1).

The expected response of the system can be determined
by computational techniques. By plotting the time evolu-
tion of & and 6 in phase space, a Poincaré map can be used
to determine the periodicity and other properties of the
system. Analysis of Eq. (2) for B, equal to zero is discussed
in Refs. 3-5. We find similar theoretical results for nonvan-
ishing B.. Equation (1) also describes a mechanical pendu-
lum driven in the vertical direction.® This example is fre-
quently discussed in textbooks on nonlinear systems.' In
the magnet experiment described here, the “gravity” can
be controlled by varying B,.

Out of the many experiments that can be done with this
simple system, we discuss here four applications: the stabil-
ity of the system, the period-doubling route to chaos, the
transient behavior of the system, and higher-order periodi-
cities. In this article, we will focus on the transient behav-
ior, since the other applications have been discussed in
Refs. 3-5. For all the discussions that follow, the experi-
mental parameters were adjusted so as to cause the magnet
to undergo rotational motion in one direction. The only
time the magnet changed its direction of rotation was when
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the system went chaotic [see Fig. 3(d)]. The stability of
the system is demonstrated in Fig. 2(a), which is the com-
puter graphics output for a Helmholtz voltage of 6 V and a
small constant vertical magnetic field. The y axis is the time
in seconds that the photogate is blocked, and the x axis
records successive rotations. Up to 200 data points, each
corresponding to a full rotation of the magnet, can be re-
corded. As mentioned before, we recorded every other
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Fig. 2. The period doubling route to chaos is shown in the above sequence
of graphs: (a) period 1; (b) period 2; (c) period 4; (d) chaotic motion.
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block of the photogate, so the times displayed in all the
figures represent the successive blocking times after the
magnet has rotated through 360°. Note how low the noise
level is; the blocking times vary by about 0.5%. This stabil-
ity of the output was not achieved until the system was
shielded from air currents by a plywood box.

The period-doubling route to chaos can be observed
when B, is parallel to B,. Results obtained from varying
the magnitude of B, while keeping B, fixed are shown in
Fig. 2(a)-2(d) for relatively light damping. The current
through the solenoid is 0.1 A, which produces a magnetic
field strength at the position of the magnet of about twice
that of the Earth’s magnetic field. As the voltage across the
Helmbholtz coils is increased, the transition from period 1
[Fig. 2(a)] to period 2 [Fig. 2(b)] to period 4 motion
[Fig. 2(c)] is observed. In Fig. 2(d), the data were taken
while B, was increased from a value that produced period 4
motion to one that caused chaotic behavior. During this
chaotic- motion, the magnet randomly changed direction
and no periodic behavior was observed over long periods of
time ( >45 min). A plot of ¢, , ; vs ¢, would be useful in
plotting strange attractors, however, an ambiguity exists in
the blocking time data for this chaotic motion: It is difficult
to determine which side of the magnet blocked the photo-
gate, as well as the sign of 6 as the magnet spins wildly in
both directions. The case of strange attractors for the rotat-
ing magnet system is discussed in Ref. 5. Starting again
from a stable period 4 motion, a careful increase of B, led to
a period 8 motion, which was not stable due to fluctuations
in the electric circuitry. This period 8 motion only lasted
for 10 cycles, i.e., 80 revolutions. The period-doubling con-
stant for these first few bifurcations was dependent on the
damping and varied from approximately 5 for heavy damp-
ing to about 8 for light damping.

Using the photogate to take data, the transient motion of
the system as it returns to steady state can be recorded, as
shown in Fig. 3(a)-3(d). For these data, the magnet was
initially spinning in a stable mode. Then, a strong horse-
shoe magnet was quickly brought near and quickly re-
moved from the vicinity of the spinning magnet. The time
of this magnetic perturbation was less than a second, i.e.,
less than one rotation of the motion. Figure 3(a)-3(d)
show data, for various degrees of damping, in which modes
of periods 1 and 2 have been perturbed. The different
dampings were obtained by using larger or smaller fins of
tape.

The decay parameters of the transient motion can be
easily determined from the photogate data. The relevant
parameters are derived from the linearization of the map at
the point of stability. Mathematical details are discussed in
Ref. 7, so we mention here only the points important to our
experiment. The spinning magnet has 3 degrees of freedom:
the angle 6, the angular velocity 6, and the phase of the
driving force A. Data taken at a fixed angle yield a two-
dimensional Poincaré map of the motion, the two dimen-
sions being 6 and A. Since in this experiment we are not
measuring the phase of the driving force simultaneously
with 6, only a prO]CCthn of the two-dimensional Poincaré
map along the € axis is recorded. Collecting data via an
analog-to-digital card would enable a measurement of the
complete two-dimensional Poincaré section.

The transient behavior of the system depends on the
eigenvalues of the Jacobian of the map at the stable point,
and, consequently, a measurement of these eigenvalues
gives insight into the bifurcation scheme of the motion. For
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Fig. 3. These graphs demonstrate how transient motion can be analyzed.
The system is perturbed, and its return to steady state is recorded: (a)
a = 120% (b) a = 144%; (c) a=165% (d) a=55". The angle a is defined
in the text.

a two-dimensional map, there are two eigenvalues. In par-
ticular, for the spinning magnet system with moderate
damping the two eigenvalues are complex conjugates of
each other, labeled a exp( + ia). If a stable system is per-
turbed, a plot in the two dimensional & — A space will be a
locus of points which converges to the stable point. For
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as a function of the peak-to-peak voltage across the Helmholtz coils is
shown.

complex eigenvalues, this locus is a spiral,” thus the projec-
tion on the & axis will be

6, =6, + Ke"" cos(na + 8), 3)

where 6, is the steady-state value of the angular velocity
and # is the iteration or rotation number, i.e., is the nth
rotation of the magnet after the perturbation is applied.
The constant K is the initial deviation from 4., i.e., the
magnitude of the initial perturbation. The angle & is just a
relative phase depending on when the perturbation was ap-
plied. The experimental data are accurately described by
Eq. (3): The transients are exponentially damped sinusoi-
dal functions. Therefore, the parameters @ and & can be

" extracted from the photogate data. For period 2 (or 4, etc.)

motion, Eq. (3) will apply to each “branch” of the data.

Measurements were done for a variety of setups, and we
display in Figs. 4 and 5 the results for a particular scenario
of the period-doubling route to chaos. The data in these
figures were obtained for parallel B; and B, by varying the
magnitude of B, while keeping B, fixed. The peak-to-peak
voltage was varied, and the parameters In @ and a were
measured as the system went through period 1, period 2,
period 4 to chaotic motion. As can be seen from Figs. 4 and
5, the most significant variation is in the angle a, which
varies from 0-180° in each region of periodicity.
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Fig. 5. A graph of the experimentally determined damping parameter a as
a function of the peak-to-peak voltage across the Helmholtz coils is
shown.
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The angle a is determined by dividing 360° by the num-
ber of data points per cycle of the sinusoidal decaying mo-
tion. For example, consider the graphs of Fig. 3. In Fig.
3(d), ais approximately 55° because the magnet undergoes
13 rotations over two sinusoidal cycles of the transient mo-
tion: « = 360/(13/2). In Fig. 3(a), a is 120°, since the
decay pattern repeats after exactly three revolutions. An
example of a equal to 360/(2.5) or 144° is shown in Fig.
3(b). In Fig. 3(c), a is approximately 165°, and a small
increase in the driving voltage will cause a bifurcation. The
determination of the parameter a is quite suitable for an
undergraduate laboratory since it is so easily extracted
from the data. One could also define a “transient winding
number” N, equal to a/180. This would be the fraction of a
semicircle that the Poincaré map winds around as it spirals
toward the stable point. N, varies from zero to one as the
system goes between bifurcation values.

The experimental values of In a plotted in Fig. 4 were
obtained from the blocking time data #, by calculating
1/t,, which is proportional to #in Eq. (3). A plotof 1/¢, vs
n is an exponentially damped sinusoidal function which
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Fig. 6. Other interesting periodic behavior that was observed: (a) period 3
motion; (b) period 5 motion; (c) period 6 motion.
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approaches a steady-state value of 1/¢, at large n,
1/t, =1/t,+ A4,, (4)

where the amplitude A4, is proportional to
e"'" cos(na + 8) from Eq. (3). 4, has extremities when
cos(na + 8) is equal to plus or minus one in this equation.
These extreme values of 4, were plotted as a function of #
on semilog paper. The slope of a best-fit line was used to
determine the value of In 4. In a student laboratory, In a
can be estimated directly from the blocking time data by
counting how many rotations it takes for the perturbation
to settle down to 1/e of its value. For example, in Fig. 3(a)
it takes about nine rotations for the deviations from steady
state to drop a factor of = 1/e. Thus In a is approximately

— 1/90r — 0.11. If the perturbations are too small, In a is
difficult to measure. The quantity In a is strongly depen-
dent on the amount of damping.

Finally, we mention some interesting motions that did
not follow the period-doubling route to chaos. These were
obtained when B, was perpendicular to B, and, also, when
B, was small and parallel to B,,. We observed the following
scenarios: periods 1 to 2 to 6 to chaos; upon lowering B, we
observed periods 2 to 5 to 3 to 1. The data from some of
these motions are displayed in Fig. 6(a)-6(c). All of these
modes lasted for over 45 mins, they were stable to small
perturbations, and persisted until we became tired of
watching the magnet and changed B,,. Two different peri-
od 6 motions were observed: one in which the magnet rotat-
ed in the same direction and another one in which the mag-
net alternated 2! times clockwise rotation then 21 times
counterclockwise rotation. A period 7 motion was also ob-
served, but it only lasted around 50 revolutions of the mag-
net. Measurements of the parameters ¢ and a described
above can give insight into the generation of these periodi-
cities and mode lockings.

As a final note, we mention that in order to obtain very
stable motion, it is necessary to eliminate all sources of
noise. These include air currents and people moving about
the room. In addition, the magnetic moment of the magnet
may change slightly over a period of hours. Since nonlinear
systems can be very sensitive to changes in the parameters,
it is important to consider this possible variation.

IV. CONCLUSION

In conclusion, we have pointed out some of the experi-
ments on nonlinear systems that can be done with the sim-
ple spinning magnet experiment described above. The peri-
od-doubling route to chaos and other periodic behavior is
quite easily observed. The use of a photogate to determine
blocking times of the magnet at a fixed angle allows an
accurate measurement of the time evolution of the system,
thus providing a convenient way to observe how the mag-
net returns to steady state after it has been perturbed. From
the experimental data, the real and complex eigenvalues of
the Jacobian of the nonlinear map can be measured. Since
the experiment can be assembled with common laboratory
equipment, it is particularly suited to introduce many
properties of nonlinear systems to undergraduate students.
As of this writing, two local high schools have set up work-
ing systems using their own equipment.
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The route to chaos in a dripping water faucet®
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The dripping water faucet is a simple system which is shown in this article to be rich in examples of
chaotic behavior. Data were taken for a wide range of drip rates for two different faucet nozzles
and plotted as discrete time maps. Different routes to chaos, bifurcation and intermittency, are
demonstrated for the different nozzles. Examples of period-1, -2, -3, and -4 attractors, as well as
strange attractors, are presented and correlated to the formation of drops leaving the faucet.

I. INTRODUCTION

During the past decade, there has been increasing inter-
est in dynamic systems which exhibit chaotic behavior. The
term ‘‘chaotic” is generally used to describe nonlinear, but
deterministic systems whose dynamic behavior proceeds
from stable points through a series of stable cycles to a state
where there is no discernible regularity or order. A perma-
nent magnet in an oscillating magnetic field,' a bounding
ball,>? an inverted pendulum,* and a bipolar motor” repre-
sent some of the mechanical systems which exhibit this
behavior.

In 1977, Rossler® suggested that a dripping water faucet
might exhibit chaotic transition as the flow rate is varied.
His prediction was experimentally confirmed a few years
later by Shaw.” Since then, the nonlinear behavior of a drip-
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Fig. 1. Block diagram of apparatus used to measure drip rates.

619 Am. J. Phys. 59 (7), July 1991

ping faucet during the transition to chaos has been exam-
ined by several authors.®"”

One way to study the dynamics of a dripping faucet is to
measure the time interval ¢y between successive drops. The
time series thus obtained can then be plotted in a time-delay
coordinate system (Z, , | v§#y) to obtain a two-dimension-
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