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Meson-nucleus interactions using polarized nuclei
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Under certain conditions the asymmetry resulting from single charge exchange reactions arises
only from the (quantum mechanical) distortion effects of the incoming and outgoing waves. If the
distortion of the incident wave is well known, some basic properties of the hadronic interaction in
the final state can be inferred. Examples for (~+,m. ) and (~+,g) reactions are given.

Recent innovations in experimental techniques have
opened up the possibility of using polarized targets in
nuclear reactions. At a recent workshop on polarized
targets, we discussed aspects of pion single charge ex-
change from polarized nuclei. ' In this paper we present
an extension of that work and examine in more detail
meson reactions which cause a transition from a spin-J
initial state to a spin-0 final state. These kinds of reac-
tions have a unique feature. Under certain conditions
the left-right asymmetry depends primarily on the
difference in the interaction strengths of the incoming
and outgoing projectiles with the nuclear medium. This
allows a direct assessment of this property. The purpose
of this work is twofold: First, to point out and to dis-
cuss the special situation that exists for these asymmetry
measurements; second, to present specific calculations
for possible future experiments.

While any practical polarization technique will pro-
vide a distribution of azimuthal quantum numbers, for
the reaction considered here where the final state has
J =0 and there is no parity change, only transitions
from initial states of even m to the obligatory m =0 final
state are possible. We assume for simplicity a pure
m = -+2 initial state.

We will confine our discussion to the reactions
' B(sr+, vP)' C and ' B(sr+, il)' C, but similar mathemat-
ical treatment will apply to other spin-0 projectiles. In
particular, we calculate the left-right asymmetry mea-
sured in the plane perpendicular to the initial boron po-
larization axis. The nuclear medium effects are included
via the distorted wave impulse approximation (DWIA),
which is briefly discussed in the next section. In the
remaining sections we give qualitative properties and re-
sults of these calculations.

DWIA FORMALISM

Detailed aspects of the DWIA formalism are present-
ed in many books and articles, and here we present the
final expressions as applied to pion reactions. The am-
plitude for the m

+ charge-exchange reaction, F,.f, is
given by

F;f=t'&f
~
(q'f

~
t,„~ q', ) ~X;+'), (I)

where
~

qt; ) and
~

4'f ) are the initial and final nuclear
states, and 7';+ ' and 7f ' correspond to the distorted
waves of the incoming sr+ and outgoing vr (or il), re-
spectively. These distorted waves are obtained by solv-
ing an appropriate wave equation in which the ~-nucleus
interaction is described by an optical potential which
represents an approximate solution to the 3 +1 body
problem. We treat the charge-exchange operator t„as
the quasilocal one-body operator (zero range)

t,„(E,k, k')=r+[Ao(E)+A. ,(E)k k'+AsF(E)tr. (krak')]
(2)

in momentum space. The gradient operators k and k'
act on the pion-nucleus relative-motion wave functions.
The complex amplitudes A,(E), which we obtain from
pion-nucleon data, correspond to the s-wave (A,o), p-wave
(A, &), and the spin-dependent (A,sF) components of the in-
teraction. For pion kinetic energies less than 200 MeV,
the I =0 and I =1 partial waves given above are ade-
quate to describe pion-nucleon interactions.

The axis of quantization is arbitrary in these calcula-
tions. However, if it is chosen perpendicular to the
scattering plane, in the direction n =k & k', certain re-
strictions are imposed on the allowed values of Am =M,
(the initial nuclear projections) minus Mf (the final nu-
clear projection). They are due to the assumed invari-
ance of the interaction under parity, which is incorporat-
ed in Eq. (2), and are a consequence of the Bohr
reAection theorem. For a spin-0 projectile, Bohr's
theorem states

~;f ——( —I ) (3)
where vr,f is the product of the initial and final parity of
the nuclear states. This result is general and not limited
to the DWIA approach. We will take the axis of polar-
ization along n throughout our calculations.

The distorted waves of the incoming and outgoing
pion can be combined and expressed in a form which is
composed of terms, which operate on the nuclear states
and transform as tensors under rotation. Equation (I)
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becomes

Ff (+f(JfMf )~ too(8;r)YOO(r)+t, „(8;r)Y,„(r)

+ r2 —p(8; &) Y2p(r )+

+g tJz „(8;r)(Y~ Xcr)J„~ %, (JM, )) .
JK

where the integration over d r is implied. Here the nu-
cleon creation and annihilation operators are implicit
and 0, which does not act on the nuclear wave functions,
is the scattering angle, i.e., the angle between the ~+ and

asymptotic momenta. We use the notation of Ref. 3
in labeling the various components as J(KS), where J is
the orbital angular momentum change of the pion-
nucleus system, K is the orbital angular momentum
transfer to the constituents of the nucleus, and S =0, 1

correspond to spin-independent and spin-dependent
components of the transition operator, respectively. The
form of Eq. (4) has several advantages. The nuclear and
reaction mechanism aspects are separated. The depen-
dence on nuclear structure enters the calculation in the
form of the reduced matrix elements (4'f ~~Yx ~~%';) and

(%f ~~( Yx Xcr )J ~~%, ). The functions tz„(8;r) and

tjz„(8;r) depend on the reaction mechanism, the transi-
tion density, and the pion's interaction with the other
nucleons. One would like to understand one of these in-
gredients and learn about the other.

For reactions in which JF ——0, the calculation is great-

ly simplified since only terms in which J =J; contribute
to the scattering amplitude in Eq. (4). In addition, pari-
ty invariance requires ( —1) =n;f. Thus the reaction
' B(sr+, mo)'oC proceeds only via the ( Y2 Xo )3 and

( Y4 X 0 ) 3 transitions, and from Eq. (3), b,M equals +2,
0, or —2. We will assume ' B to be completely in the

M, = +2 state and calculate the left-right symmetry

symmetry Ar(8) in the scattering plane normal to the
quantization axis.

We define the asymmetry as

o~(8) —oL (8)
Ar(8):—0.~ (8)+o g (8)

where a.
L and o.~ denote the left and right cross sections

(i.e., o L is for kXk in the +m direction). In this ratio
the reaction amplitude A.sF(E) and the nuclear structure
dependence largely cancel between the numerator and
denominator. In fact, if the nuclear model space is re-
stricted to the p shell, the reaction proceeds only via the
( Yq Xo )3 operator and the cancellation is exact. On the
experimental side as well, normalization errors are great-
ly diminished in this ratio. Therefore, the uncertainties
in the data taking and theoretical analysis are greatly re-
duced, and the asymmetry is mainly dependent on the
projectiles interaction with the nucleus. It is this depen-
dence which we investigate in the next section.

QUALITATIVE FEATURES OF ASYMMETRY IN
SPIN-J TO SPIN-0 TRANSITIONS

Usually an asymmetry in the left and right scattering
arises from an interference between the spin-dependent
and spin-independent components of the scattering am-
plitude from a polarized target. For an initial state in
which —( —1) =m;f, however, only the spin-dependent
part of the interaction contributes. The asymmetry is of
a different nature. It arises not from such an amplitude
interference, but from an asymmetry in the interaction
of the incoming and outgoing projectiles. This can be
seen by examining the amplitudes for left and right
scattering from the DWIA formalism.

The amplitudes for scattering to the left and right can
be written as

FI f (8) ~SF( CII[ Y2 Xo ]3II
"»«» ~a PP Pt' e'

ll'
mm'

l 3

m pl 2 (6)

l' l
F„...(8)=~sF& "Cll[Y~X~]311"B&«7 2 IaPP P

II'
mm'

or, alternatively,

2 (7)

l' l
F„;sh, (8)=As„(' C~~[YzXcr]3~~' B)«7e ' g I&&P P e'

ll'
mm'

2 '

with the terms defined in the Appendix. If the distorted
waves of the incoming and outgoing projectiles are iden-
tical [i.e. , X, (r) =Xf(r)], then Io equals I~ ~. The ampli-
tude for scattering to the left [Eq. (6)] has the same mag-
nitude as that for scattering to the right [Eq. (8)] and the
asymmetry is zero. This property is not limited to the
DWIA model, but stems from symmetry requirements.

The asymmetry will also be zero when the distorted
waves are unequal if I&& is real, since from Eq. (6) and
Eq. (7),

~
F~,r, ~

equals
~
F„h, ~

. This situation would
occur if the initial and final scattering states were plane
waves with perhaps different momentum. An asym-
metry results therefore when the distorted waves are
different, but not both plane waves. This difference is
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caused by different absorptive properties, different in-
teraction strengths, and different momenta in the nuclear
medium. Next we discuss how these aspects, under cer-
tain conditions, affect the asymmetry.

Consider the case of an asymmetry caused by different
absorptive properties for the incoming and outgoing pro-
jectiles. The classical explanation of this phenomenon
was given by Newns, Tobocman, and Newns and Re-
fai for the case of deuteron stripping, and we present
the corresponding explanation for pions in Fig. 1. The
initial boron nucleus in the figure is taken to be polar-
ized out of the page, up being the positive direction.
Since the final state has J =0, negative angular momen-
tum must be transferred during the process. Thus the
momentum-transfer vector q must pass to the left of the
center of the nucleus so that rxq is negative. The re-
gion of the reaction, therefore, will be determined by the
direction of the momentum transfer q, shown in the
figure. For scattering to the right, q points to the upper
left, and the reaction occurs in the lower left hemisphere
of the nucleus in order to produce the necessary angular
momentum transfer. As illustrated in Fig. 1, the dis-
tance traveled in the nucleus by the ~+ (solid line) is
longer than for the m (dashed line). The situation is re-
versed for scattering to the left ~ An asymmetry will re-
sult, therefore, if the incoming and outgoing particles
have different absorptive properties, and the magnitude
will scale with the difference.

-0.5—

—I.O

FIG. 3. The result of Eq. (10) for KR =5.6.

The quantum mechanical treatment (within certain re-
gions of momentum transfer) gives results in qualitative
agreement with the classical description. For compar-
ison consider the case in which the incoming particle has
a short mean-free path and the outgoing one very long.
We will represent this situation by using distorted waves
for the m. + and plane waves for the vr . The laboratory
energy T„=165 MeV is chosen since the ~+ is highly
reactive near the P33 resonance. The resulting asym-
metry for this extreme example is plotted in Fig. 2 (solid
line). Except for small angles, where quantum mechani-
cal effects are enhanced, the result is as expected from
the classical arguments.

We digress, in this paragraph, to discuss the overall
features of the DWIA calculation in a semiclassical ap-
proach. To do this we evaluate the reaction integral as-
suming that the interaction takes place only on the sur-
face of the forward hemisphere of a sphere. For single
multipole transition (l), the left and right scattering am-
plitudes are approximately

I.p

0.5—

FL(qR)=A, (E) J e'q' Yl+ (8,$)dQ,
R hemisphere

FI(qR)= I f exp iI[qR sin0cos(a/2 —P)+mg]I
0 —1

R

(9)

/

/
/

pp /'

—0.5—

—l.p

I i I

30 60 l2 0 l50

X PP (0)d cos8 d P, (10)

d
d [ —qR sin9 cos(a/2 —P )+m P]=0

or

where n is the scattering angle. As discussed in Ref. 5,
in the classical limit (i.e., large m) the major contribu-
tion to this integral will come when the phase in the ex-
ponent is stationary over the P integral. This occurs
when

FIG. 2. Asymmetry for He ' B(sr+,~ )' C reaction at 165
MeV. The solid curve is the DWIA calculation with m+ dis-
torted waves and m. plane waves. The dashed curve is the re-

. sult of Eq. (10).

qR sinO sin(a/2 —P) =+m

which results in scattering primarily to the right as ex-
pected from the classical analog of Fig. 1. The classical



2476 P. B. SIEGEL AND W. R. GIBBS 36

limit is not reached, however, for reactions in which qR
is small [i.e., ' B(n+, 7r )' C for T &200 MeV]. Never-
theless, we show in Figs. 2 and 3 that Ar(8) is substan-
tial and in qualitative agreement with these simple ideas.
The asymmetry,

~r(())=( [FR I' —I+L ')~( I+R i'+ FR I')

calculated from Eq. (10) for I =2, is plotted in Fig. 2 for
comparison with the full DWIA calculation. In Fig. 3
Az(0) [as calculated from Eq. (10)] is also plotted for
larger momenta. As seen in this figure, the sign of the
polarization depends on the value of qR. For qR &6.0
the sign of the polarization is the same as the classical
interpretation of Fig. 1, but there are regions in which
the sign is reversed. A good approximation to this in-
tegral is obtained by setting +=0 and 6j=w/2 and in-
tegrating only over P. This gives

8~J&(qR )j, (qR )
A(qR)=

m J2(qR)+16j, (qR)

where j& and J2 are the spherical and regular Bessel
functions. For this highly asymmetric absorptive case,
there is a direct relationship between Ar(8) and the
mean-free path.

Next consider the case in which there is no absorp-
tion. This is represented by a real optical potential, and
results in focusing and bending of the projectile wave
functions. In Fig. 4 we plot two situations, one for an
attractive and the other for a repulsive potential, at
T =165 MeV for the full DWIA calculation. The out-
going particle is described by a plane wave. It is seen
that substantial polarization can occur even in the ab-
sence of attenuation. In this case, the polarization
rejects the sign of the interaction. In the next section
we present calculations for pion single charge exchange
and coherent eta production.

RESULTS

As a first example consider the reaction 'OB(~+, ~o) 'OC

at T„=70 MeV. At this low energy blocking effects
tend to reduce the pions interaction within the nucleus.
The extent of this blocking and other second order
correlation effects is not completely understood, and an
asymmetry measurement could be useful. Results of
pion single-charge exchange experiments near 50 MeV
suggest that the pion interacts very weakly, almost to
the extent of being a plane wave in the nucleus. If this
were the case, then Ar(g) would be zero for all angles.
Note that since

~

k
~
&

~

k' ~, Ar(0) will be zero only if
III is real in Eq. (6). Deviations from this plane wave
approximation would cause an asymmetry, and such a
measurement could give information about the nature of
the blocking effects. In Fig. 5 we plot calculations of
3 r(g) with (solid line) and without (dashed line) Pauli
blocking effects, which are included using the model of
Ref. 9. The net effect is to reduce the imaginary part of
the optical potential. The dashed curve corresponds to
using a finite range (t-rho) optical potential which does
not include medium modifications. The asymmetries are
small since the ~+ and ~ have roughly the same in-
teraction with the nucleus. However, if exotic effects
were to occur, such as might be associated with a
nonzero hadronization distance or a shorter lifetime for
the ~ in the nuclear medium, then the asymmetries
could be as dramatic as those shown in Fig. 2.

As a second example, we consider the eta-production
reaction ' B(~+,g)' C. For T +

——460 MeV, the eta has
relatively low energy and the s-wave eta-nucleon ampli-
tude is the dominant one. Since there is a large
difference between the incoming and outgoing waves,
one expects the possibility of large asymmetries and a
sensitivity to the eta-nucleon interaction. We have cal-
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FIG. 4. Asymmetry for the reaction ' B(m+, ~ )
' C at l 65

MeV for the full DWIA calculation. The solid (dashed) curve
is for ho= —3 (+3) and b, = —7 (+7). The ~ wave is undis-
torted in both cases.

FIG. 5. Asymmetry for the reaction ' B(sr+, vr )' C at 70
MeV for the full DWIA calculation. The solid (dashed) line
corresponds to a blocked (unblocked) optical potential.
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calculated Ar(9) for the case in which the eta-nucleon
scattering length is +0. 1 fm, —0. 1 fm, and zero (i.e.,

plane wave final state), and the results are plotted in Fig.
6. The sensitivity to the scattering length is encourag-
ing. For this calculation, the pion distorted waves were
calculated using a t-rho finite range optical potential.
These distorted waves have been tested successfully with
pion single charge exchange calculations at this energy.
The eta distorted waves were also obtained from a t-rho
finite range optical potential with strength determined
by the scattering length. This optical potential is
perhaps unrealistic at low energies since it is real and ig-
nores inelastic g-nucleon exothermic channels which
would give rise to imaginary pieces. Nonetheless, these
exploratory results indicate that this might be a sensitive
method to extract this eta-nucleon parameter. We also
note that the spin averaged cross section does not
uniquely determine the eta-nucleon scattering length,
and also has a strong dependence on the transition am-
plitude A,s„(E), the form factor of the transition density,
and the nuclear structure reduced matrix element.

In summary, we have shown that meson reactions
from an odd-integer spin initial state to a spin-0 final
state of the same parity provide potentially very useful
experiments. The left-right asymmetry perpendicular to
the polarization axis depends on the difference in the in-
teraction of the incoming and outgoing projectiles. The
asymmetry for the reaction ' B(m.+, rl)' C is sensitive to
the g-nucleon scattering lengths.
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FIG 6. Asymmetry for the ' B(m+, g)' C reaction at 461
MeV for the full DULIA calculation. The q-nucleus optical po-
tential is derived corresponding to the three scattering lengths
(a) indicated in the figure.

APPENDIX

Only the spin-dependent part of the operator in Eq.
(4) will cause transitions between the ground states of
' B and ' C. This operator can be decomposed into the
following form in coordinate space:

o'. ( V+IX V%" ) = i &6+ i ' ' &2' + 1[Y~ )& o. ]& [ Yi (k') & Yi (k ) ]J
JK
I/'

X fl'l(21 —1)(21'—1)]'~~ 1

+[(1'+1)(l + 1)(21'+3)(21+3)]'~2
l'+1 l+1

l+1 l'+1 K
() () ()

D+ f'Pi ]D+ f'PI]

+ [1'(1+1)(21'—1)(21+3)]' 2

+ f1(l'+1)(21'+3)(21 1)]'~2

=—g GJ~„(r)[Y~~o ]~'f Yi (k ) && Yi(k)]~
JK
ll'

(Al)
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where D +(4 /) and D (4/) are defined as

d+1
D +(4 /)—:

dr r

and

D (4/)—= + 'I// .
Qr r

(A2)

Here 41 and 4'1 represent the radial wave function for the l'th partial wave, k' and k the direction of the outgoing
and incoming projectile, and 0 is the angle between k and k. For the ' B reaction J equals 3. If we limit our discus-
sion to the p-shell basis, then K =2 and the operator becomes

o"(V'P X V'0')=g 632// (r)[Y2 X/7]3. [ Y/(k') X Y/(k)]3 .
ll '

The matrix elements FM(8) between the initial ' B and final ' C nuclear states is then

FM(8)=AsF(E)(' C(J =0)
l

o (V'PfX V%")
l

' B(J=3,M))

= AsF(E)( ' C(g. s. ) II [ Y~ X tT ]311"B(g.s. ) & i'&7( —I ) y I„,[ Y, , (k ) X Y(k)]3M (A4)

where I„=f G3$//'(r)—p, (r)r dr. In this expression p, (r)
is the nuclear transition density. Choosing the axis of
quantization as n =k && k', the matrix element for the re-
action becomes

Or alternatively for scattering to the right, M = —2 in

Eq. (A5). In this case, F„h,(8) is given by

F~(~)=~sF& "Cll[ Y~ X ]3ll "»~&7
l' l

pmpm'eim'//

11'
mm'

3

M (A5) l' l
X y I pmpm' /m'//

11'
m' m

mm'

F„,h«~) =F-z(~)

=~,„("cll[Y,x ],ll"B)i&7

3
(AS)

l 3I'
X/1 P P e'

11'
m' m 2

mm'

(A6)

to within an overall phase. In this equation
P/ =P/ (90') an—d sin&=kXk'. For M=2 the ampli-
tude, for scattering to the left, is given by

F„„(&)=F,(&)=&sF("Cll[Y,x~], ll
"B)x&7

B«[ ~

l 2] equals ( —I)[ '
~

'
l z] which is equal to

[ ' '
l z], since I 1' is even in our case when I/. =2,

Eq. (Al). Upon the interchange of 1~1' and
—m~m', Eq. (AS) becomes

F„...(())=~„("Cll[Y,x ],ll
"B)i&7.—"

l' l
pmp m' —im't/

ll'
m' m

mm'

and scattering to the right by

F„h,(0)=F~( —6/)

=as„("Cll[Y, X ],ll
"B)yv'7

2 (A7)

m' m
mm'

since now m +m'=2.

l' l
X g I P-P-

ll'

3

2 (A9)
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