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Abstract

The treatment of Alpha decay using the Gamov-Gurney-Condon

method is a staple in introductory modern physics courses. The quan-

tum mechanical tunneling probability times the number of wall colli-

sions per second yields a satisfactory comparison with nuclear alpha

decay half-life (or decay rate) data and was one of the earliest suc-

cessful applications of quantum physics. The next question for the

students to consider is how to improve this approximate result. In

this article we present a method to calculate the decay rate λ (or half-

life τ) for a metastable state from the Schrödinger equation without

knowledge of scattering theory. Comparison is made with the Gamov

formula for a simple barrier potential which has an analytic solution,

and for U219 using a numerical method. The calculations are appropri-

ate for the undergraduate Physics curriculum and would �t well into

a Computational Physics course.
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1 Introduction

The treatment of alpha decay using the method of Gamov[2] and Gurney-
Condon[3], which we refer to as Gamov's method, is an important application
of quantum mechanical tunneling in introductory modern physics courses
[1]. However, Gamov's method is an approximation and the students might
wonder how one could calculate the decay rate for alpha decay directly from
the Schrödinger equation. In this note, we present a method for calculating
the decay rate of a quasi-bound particle "trapped" with angular momentum
l = 0 inside a spherically symmetric potential well.

In most classroom applications, the kinetic energy of the decaying particle
will be small compared to it's rest mass and it will be su�cient to use the non-
relativistic Schrödinger equation to analyze the decay. For a symmetric three
dimensional potential V (r), where the particle has zero angular momentum,
l = 0, the particle's wave function ψ(r) can be written as ψ(r) = u(r)/r
where u(r) satis�es

− ℏ2

2m

d2u(r)

dr2
+ V (r)u(r) = Eu(r) (1)

with the boundary condition u(0) = 0.
A quasi-bound particle with energy E > 0 will decay and be a free parti-

cle, since V (r) → 0 as r → ∞. Without signi�cant loss of accuracy, one can
set V (r) = 0 outside a large distance R from the origin where the particle is
not bound. Thus, for r > R the particles wave function will be that of a free
particle, which we parameterize as u(r) = A(E)sin(kr + δ) for r > R. Here

E > 0 is the particle's kinetic energy and k =
√
2mE
ℏ for a particle with mass

m.
For real energy E > 0, A(E)2 ̸= 0 and the wave function is not normal-

izable. Our approach to determine the quasi-bound state's energy er and
width Γ is the following. We start with an energy E below the quasi-bound
energy and solve the Schrödinger equation for A(E). Then, we increase E
by a small amount, and each time we solve for A(E). A(E) will keep de-
creasing, a minimum will be reached at er, then A(E) will start to increase.
The function |A(E)|2 will have an inverse Breit-Wigner (or Lorenzian) form
about er:

|A(E)|2 ≈ |C|2[(E − er)
2 + (

Γ

2
)2] (2)
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We �t |A(E)|2 with this function to �nd er and Γ. The decay rate λ is related
to resonance width Γ via λ = Γ

ℏ . The half-life τ of the quasi-bound particle

is τ = ln(2)
λ

.
Our treatment here is somewhat di�erent than the methods in under-

graduate physics texts and in Physics Education Journals. In Physics Edu-
cation journals, the authors mainly treat one-dimensional metastable states
and calculate the transmission T or re�ection coe�cient R. The transmis-
sion coe�cient, T (E), will have a Briet-Wigner form about the energy of the
metastable state. See Ref. [4] and cited references within for a nice treatment
of the one dimensional case. Here we treat the three-dimensional metastable
state and the student does not need any knowledge of scattering theory.

2 Theory

For real energy E, A(E) ̸= 0 and the wave function is not normalizable.
However, if we let the energy become complex (e), then there can be an
energy where the amplitude A(e) = 0. One can determine the complex
energy e at which A(e) = 0 by calculating the amplitude A for energies E on
the real energy axis. Suppose A(e) is a complex analytic function and has a
zero at an energy e0 = er−eii in the complex plane. For nearly all classroom
examples the energy width is very small compared to the resonant energy,
i.e. ei

er
<<< 1. One can expand A(e) about this zero point in a Taylor series:

A(e) = 0 + A′(e0) ∗ (e− E0) + · · ·
= C(e− (er − eii)) + · · ·

where C is the complex derivative of A at the energy e0. The magnitude of
|A|2 for energies E on the real energy axis is approximately

|A(E)|2 ≈ |C|2[(E − er)
2 + e2i ] (3)

We calculate A(E)2 starting at an energy below the �rst quasi-bound res-
onance and increase E until A(E)2 is minimized. Then, using very small
intervals ∆E, we determine A(E+n∆E) for integer values of n between −50
and +50: −50 < n < +50. The complex energy parameters er and ei are
determined by a �t to the 100 values of A(E + n∆E) using gnuplot.
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To relate ei to Γ, we use the property that at the energy er − eii, the
amplitude A(e) is zero for r > R and the complete wave function for the
three dimensional case is

u(r, t) = u(r)e−i eℏ t

= u(r)e−i
(er−eii)

ℏ t

= u(r)e−i erℏ te−
ei
ℏ t

The absolute value of u(r, t) squared is

u(r, t)u∗(r, t) = u(r)∗u(r)e−2
ei
ℏ t (4)

Thus, the quasi-bound state decays away with a decay constant λ = 2 ei
ℏ .

The decay width Γ = ℏλ = 2ei. That is, ei =
Γ
2
. The half-life of the decay,

τ 1
2
, is given by τ 1

2
= ln2

Γ
.

We also note that the phase shift δ is the l = 0 scattering phase shift, δ0,
for alpha-nucleus scattering. At the resonance energy, δ0 =

π
2
, and the energy

dependence of δ0 is given by δ0(E) = tan−1( Γ/2
er−E

). One could calculate δ0(E)

and �t this function with tan−1( Γ/2
er−E

) to determine er and Γ as done in
Ref.[5]. However, we �nd it easier for undergraduate students to calculate
and �t A(E), since they do not need to have covered scattering theory.

3 Examples

We present two examples that would be appropriate for undergraduate stu-
dents. The �rst is a simple piecewise step potential that has an analytic
solution for u(r). The second is a more realistic potential that is a fair ap-
proximation to the potential that an alpha particle experiences in and outside
a nucleus. In this case, the Schrödinger Equation is solved numerically to
determine u(r).

In each case, the method we use to solve for er and Γ is the following.
We choose a starting energy E below er and solve for A(E). We choose an
initial energy increment ∆E and solve for A(E + ∆E). Then, the energy
is increased repeatedly by ∆E and the amplitude A is determined. At �rst
A(E + i∆E)) will decrease. When A(E + i∆E) starts increasing, the energy
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increment ∆E is replaced by −∆E
2

and the process is repeated. After many
iterations, an energy E0 is reached which will be very close to er.

To get an energy step size about which to calculate A(E) near E0, we
�rst determine the Gamov width, gwidth, which is de�ned as the tunneling
probability times the number of wall collisions, or hit rate, per second. The
computer program then produces a �le that lists A(E) for values Ei equal to
Ei = E0 + i ∗ gwidth for integer values of i between −50 to +50: −50 < i <
+50. Finally, to determine er and Γ, a gnuplot program is run that �ts the
data A(E) with the inverse Lorenzian function..

3.1 Piece-wise Constant Potential

The following potential is a simple example for which u(r) can be determined
analytically. There are three regions where the potential is constant:

VI(r) = 0 for 0 < r < a

VII(r) = V0 for a ≤ r ≤ b

VIII(r) = 0 for r > b

Note that in region I the wave function uI(0) = 0 since u(r) = rψ(r) and
ψ(r) is �nite at the origin. This is equivalent to having an in�nite barrier
at r = 0, i.e. VI(0) = ∞. Therefore the wave function uI(r) is proportional
to sin(kr) in region I, and we take the proportionality constant to be one.
Since the potential is constant in each region, the Schrödinger equation is
easy to solve with solutions:

uI(r) = sin(kr)

uII(r) = Be−k′r + Cek
′r

uIII(r) = A sin(kr + δ)

where k =
√
2mE
ℏ and k′ =

√
2m(V0−E)

ℏ .
At r = a and r = b the wave function and it's derivative must be con-

tinuous. These requirments will yield four equations to solve for the four
parameters. We are only interested in the parameter A.

At r = a we have:
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sin(ka) = Be−k′a + Cek
′a

k cos(ka) = k′ (−Be−k′a + Cek
′a)

and at r = b the continuity conditions are

A sin(kb+ δ) = Be−k′b + Cek
′b

Ak cos(kb+ δ) = k′ (−Be−k′b + Cek
′b)

After some algebra one obtains:

A sin(kb+ δ) =
ek

′(a−b)

2
(sin(ka)− k

k′
cos(ka))

+
ek

′(b−a)

2
(sin(ka) +

k

k′
cos(ka))

and

A cos(kb+ δ) =
ek

′(a−b)

2
(cos(ka)− k′

k
sin(ka))

+
ek

′(b−a)

2
(
k′

k
sin(ka) + cos(ka))

One can determine |A|2 by squaring and adding the right sides of the above
equations, since (A sin(kb+ δ))2 + (A cos(kb+ δ))2 = A2.

We have written a computer program that computes |A|2 as a function of
the energy E of the quasi-bound particle. The program is listed and explained
in Appendix I. The |A(E)|2 are �t to an inverse Lorenzian function by the
gnuplot program "barrier�t.p", which is listed in Appendix II. A graph of
the amplitude squared, |A(E)|2, versus energy around the resonance energy
er is shown in Fig. 1. The horizontal axis is in units of (gwidth)/10. The
resulting resonance width is Γ = 2.3 ∗ (gwidth) ≈ 9.2× 10−7 MeV .

Comparing the value using the Schrödinger Eq. with that of the approx-
imate Gamov tunneling calculation, we see that the Gamov calculation is
only o� by a factor of 2.3. The ratio Γ

e0
≈ 4× 10−7, which is easily computed

using long double precision.
It is interesting to �x V0 and a and increase the tunnel length b to see

when long double precision fails. We increased b from 10 fm to 18 fm and
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Figure 1: A graph of A2 versus energy. The parameters of the barrier
potential are: a = 4 fm, b = 10 fm and V0 = 10MeV . The data are �t to
the function C((e− er)

2 + (Γ
2
)2). The energy of the metastable state is

er ≈ 2.2817286 · · · MeV with a width of Γ ≈ 9.2× 10−7 MeV , resulting in
Γ
er

≈ 4× 10−7.

the quasi-bound energy e0 was unchanged to within 8 signi�cant �gures. The
width Γ decreased down to 10−15 MeV , but remained equal to 2.4∗(gwidth).
At b = 19 fm the calculation started to become inaccurate, i.e. when Γ

e0
<

10−15.

3.2 Alpha Decay Potential

The potential of the previous section was simple and enabled a calculation
of the amplitude A(E) without using numerical methods. In this section we
determine how the Gamov tunneling calculation compares to the calculation
using the Schrödinger equation for the potential felt by an alpha particle
trapped in a heavy nucleus. In a heavy nucleus, neutrons and protons can
cluster into an alpha particle. The formed alpha will be attracted to the other
neutrons and protons in the nucleus via the strong interaction, but repelled
by the other protons in the nucleus due to the electrical force. The size of
the nucleus we call c. We choose the potential for the alpha to be the sum of
the electric potential of a uniformly charged sphere of radius c, regions I and
II, plus a simple attractive square well potential, region I (r ≤ c), of depth
V0 for the strong nuclear interaction:
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VI(r) = 2(Z − 2)q2
3c2 − r2

2c3
− V0 for 0 < r ≤ c

VII(r) =
2(Z − 2)q2

r
for c < r ≤ R

VIII(r) = 0 for r > R

The potential is set to zero for r > R, where R is very large and outside
the "tunnel region". For r > R, the potential is zero, and the wave function
uIII(r) equals A sin(kr + δ). Here Z represents the number of protons in
the nucleus, q is the electron's charge, c is the radius of the nucleus, and V0
is the strength of the attractive strong potential. The above form for the
alpha-nucleus potential is similar to the one used in Ref. [5]. Instead of a
Woods-Saxon potential for the strong nuclear interaction we have chosen a
simple attractive square well.

There is no analytic solution for this potential, so numerical methods
must be used. The half-life for alpha decay can be very long, and hence the
ratio Γ

er
can be very small. In a 64 bit compiler, a �oating point number in

long double precision has 17 signi�cant decimal digits. Therefore to examine
the amplitude as a function of energy near a metastable resonance the ratio
Γ
er

needs to be greater than around 10−17. For the alpha potential, a larger
value of er will yield a larger decay width. Thus, for a numerical calculation
it is best to try alpha decays that have a large energy. The largest energies for
alpha decays are around 10 MeV , so decays with a width Γ of greater than
10−16MeV should be feasible. A resonance width of 10−16 MeV corresponds
to a half-life of around 4.5 µs. Searching the uranium isotopes, we see that
U219 is a good candidate to consider. U219 has an energy of 9.94MeV above
the ground state and a half-life of 42 µs [6].

We have used the Euler algorithm, a method taught in undergraduate
Computational Physics courses [7], to determine u(r) for the three regions.
If students want to calculate longer lived uranium isotopes, one can use
quadruple precision which represents �oats with 128 bits and therefore Γ

e0
can

be as small as 10−34. The challenge one has is to determine |A(E)|2 around
the resonance energy, er, for values of E ≈ er(1 ± 10−17). In Appendix III,
we list and discuss the c program we used.

We show the results for U219 for three di�erent values of V0 in Figs. 2-
4. In each case we have chosen the nuclear radius to be c = 1.3A1/3 and
the horizontal axis is in units of gwidth/10. In Fig. 2, the potential is
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V0 = 111.0MeV . For this value of V0, the �rst l = 0 metastable state has an
energy of er = 11.27 MeV . The width is 1.74 gwidth ≈ 7.22 × 10−14 MeV .
The ratio Γ

er
≈ 6.4× 10−15 and the graph is very smooth.

In Fig. 3, the potential strength V0 is 112MeV . Here the �rst metastable
state occurs at er = 10.32 MeV and a width of 0.84 gwidth ≈ 4.41 ×
10−16 MeV . The ratio Γ

er
≈ 4.3× 10−17 and the �t is fair. The data however

are starting to deviate from a smooth curve.
Finally, in Fig. 4 the potential V0 is set to 112.4 MeV . The �rst

metastable state occurs at er = 9.94 MeV , which agrees with the experi-
mental value. The width Γ equals 1.9 gwidth ≈ 1.43 × 10−16 MeV . The
ratio Γ

er
≈ 1.4× 10−17 and the �t is barely acceptable.

A decay width of Γ = 1.43×10−16 MeV results in a half-life of τ = ln2 ℏ
Γ

≈
3.2µs. This calculated value compares favorably with the experimental value
for the half-life of U219 which is 42 µs [6]. The experimental value for τ
should be longer than the calculated one done here, since we have assumed
that an alpha particle has already been formed. There is a preformation
factor, P , which needs to be considered. P represents the fraction of the
time an alpha is formed in a nucleus in the metastable state [8]. In our case
P ≈ 3.2

42
≈ 0.07. From the literature, the preformation factor can range from

0.2 to 0.02.

4 Summary

We have presented a method, appropriate for the undergraduate classroom,
for determining the energy and decay rate of a particle in a three dimensional,
l = 0, metastable state. The method involves the calculation of the amplitude
of the wave function, u(r) at large r, as a function of real energy near the
energy of the metastable state. The method can be used without knowledge
of scattering theory. Two examples were presented, one with an analytic
solution and one with a numerical solution. The half-life example of U219

gives students the experience in analyzing data with a model that requires
numerical methods which are covered at the undergraduate level.

9



 0

 20

 40

 60

 80

 100

 120

 140

-20 -15 -10 -5  0  5  10  15  20

'u219_111.txt'
Fit

A2  (
Re

la
tiv

e 
U

ni
ts

)

(E-E0) (Gwidth)/10 �

Figure 2: A graph of A2 versus energy for U219. The parameters of the
square well potential are: c = 1.3 fm and V0 = 111MeV . The data are �t
to the function C((e− er)

2 + (Γ
2
)2). The energy of the metastable state is

er ≈ 11.2MeV with a width of Γ ≈ 7.2× 10−14 MeV , resulting in
Γ
er

≈ 6.4× 10−15.
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Figure 3: A graph of A2 versus energy for U219. The parameters of the
square well potential are: c = 1.3 fm and V0 = 112MeV . The data are �t
to the function C((e− er)

2 + (Γ
2
)2). The energy of the metastable state is

er ≈ 10.3MeV with a width of Γ ≈ 4.4× 10−16 MeV , resulting in
Γ
er

≈ 4.3× 10−17.
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Figure 4: A graph of A2 versus energy for U219. The parameters of the
square well potential are: c = 1.3 fm and V0 = 112.4MeV . The data are
�t to the function C((e− er)

2 + (Γ
2
)2). The energy of the metastable state is

er ≈ 9.94MeV with a width of Γ ≈ 1.43× 10−16 MeV , resulting in
Γ
er

≈ 1.4× 10−17 and a half-life of 3.2µ sec.
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5 Appendix I

Below, we list the c program that we used to produce a �le of A(E) to be
analysed by a gnuplot �tting program.

We used values of a = 4 fm, b = 10 fm and V0 = 10 MeV for an alpha
particle, massmc2 = 3727MeV . As a starting energy we used E = 0.1MeV ,
and a starting energy increment∆E = 0.03MeV . After many iterations, the
amplitude A(E) has a minimum at e0 ≈ 2.2817286 · · · MeV . The gamov
decay rate is de�ned as the tunneling probability tprob = e−2k′(b−a) times
the "hitrate" hrate =

√
2e/m/(2a). The resonance width from the Gamov

approximation gwidth = (tprob ∗ hrate ∗ ℏ) is determined. Then, a �le "bar-
rierout.txt" is produced which lists A(E) for energies E = e0 + i gwidth/10
for values of −50 ≤ i ≤ +50.

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <math.h>

int i;

long double a, b, e, e0, dele, v0, k, kp;

long double mc2, hc, amp2, psi1, psi1p;

long double amp2scale, test, tprob, hfreq, decaywidth, halflife;

FILE *out1;

int main()

{
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out1=fopen("barrierout.txt","w");

a=4.0;

b=10.0;

mc2=3727.0;

hc=197.33;

e=hc*(2.0*3.14/a)*(2.0*3.14/a)/8.0/mc2;

dele=0.01;

v0=10;

//Find Amp at starting energy e for test value

k=sqrtl(2.0*mc2*e/hc/hc);

kp=sqrtl(2.0*mc2*(v0-e)/hc/hc);

psi1=expl(kp*(a-b))*(sin(k*a)-(k/kp)*cos(k*a));

psi1=psi1+expl(kp*(b-a))*(sin(k*a)+(k/kp)*cos(k*a));

psi1p=expl(kp*(a-b))*(cos(k*a)-(kp/k)*sin(k*a));

psi1p=psi1p+expl(kp*(b-a))*((kp/k)*sin(k*a)+cos(k*a));

test=psi1*psi1+psi1p*psi1p;

//Find the quasi-bound state energy

for(i=1;i<1000;i++)

{

e=e+dele;

k=sqrtl(2.0*mc2*e/hc/hc);

kp=sqrtl(2.0*mc2*(v0-e)/hc/hc);

psi1=expl(kp*(a-b))*(sin(k*a)-(k/kp)*cos(k*a));

psi1=psi1+expl(kp*(b-a))*(sin(k*a)+(k/kp)*cos(k*a));

psi1p=expl(kp*(a-b))*(cos(k*a)-(kp/k)*sin(k*a));

psi1p=psi1p+expl(kp*(b-a))*((kp/k)*sin(k*a)+cos(k*a));

amp2=psi1*psi1+psi1p*psi1p;

if(amp2>test) dele=-dele/2.0;

test=amp2;

}

e0=e;

hfreq=sqrt(2.0*e/mc2)*hc/2.0/a;

tprob=expl(-2.0*kp*(b-a));

decaywidth=hfreq*tprob;

printf("e0 = %.10Lf k = %Lf kp = %Lf dele = %Le\n",e0, k, kp, dele);

printf("Tunnel Prob = %.10Le hfreq = %Lf decaywidth = %.10Le \n",tprob, hfreq, decaywidth);

halflife=log(2.0)*(6.58*pow(10,-22))/decaywidth;
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printf("halflife = %.10Le sec \n",halflife);

//Write the data file barrierout.txt for gnuplot to use

for(i=-50;i<50;i++)

{

e=e0+i*decaywidth/10.0;

k=sqrtl(2.0*mc2*e/hc/hc);

kp=sqrtl(2.0*mc2*(v0-e)/hc/hc);

psi1=expl(kp*(a-b))*(sin(k*a)-(k/kp)*cos(k*a));

psi1=psi1+expl(kp*(b-a))*(sin(k*a)+(k/kp)*cos(k*a));

psi1p=expl(kp*(a-b))*(cos(k*a)-(kp/k)*sin(k*a));

psi1p=psi1p+expl(kp*(b-a))*((kp/k)*sin(k*a)+cos(k*a));

amp2=psi1*psi1+psi1p*psi1p;

amp2scale=amp2*exp(14);

fprintf(out1,"%d %.8Lf\n",i,amp2scale);

}

fclose(out1);

return(0);

}

6 Appendix II

The following is a program for gnuplot that �ts the data in the �le barrier-
out.txt

set term pdf

set out 'barrierfitout.pdf'

set grid

set key center

set xlabel '(e-e_r) (Gwidth)/10 MeV'

set ylabel 'A^2 (Relative Units)'

set xrange [-49:49]

set yrange [0.0:30.0]
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e=0.1

del=10

f(x) = c*((x-e)*(x-e)+del*del/2.0/2.0)

fit f(x) "barrierout.txt" u 1:2 via c, e, del

plot 'barrierout.txt', f(x) t 'Fit'

7 Appendix III

The following is a c program that produces a �le of |A|2 versus E for the
alpha potential.

Subroutine ecalc

For an alpha of energy e, the "tunnel region" is from the nuclear radius

r = c to rmax = 2(Z−2)q2

e
. We choose for the nuclear radius a value c =

1.3A1/3 fm, which for U219 is 7.83 fm. For an energy of e = 10.1 MeV ,
rmax = 25.59 fm. We �rst obtain an accurate value for er by choosing a
value for r near the end of the "tunnel region", r = 20 fm, and searching
for the energy where psi(r = 20 fm) = 0.

To obtain values for |A|2 in region III, we chose R = rmax + 20 ≈
45 fm. So, for values of r > 45 fm, the potential VIII(r) = 0, and psi(r) =
A sin(kr + δ). We calculate |A|2(e) at indices rcal1 and rcal2. The energy
is increased until a minimum is found for |A|2, which gives a very accurate
value for er.

Subroutine gfac

This subroutine calculates the Gamov width gwidth.
Subroutine psicalc

This subroutine produces the �le ampout.txt which lists the values of |A|2
for energies near the resonance energy er.

//Program for calculating Alpha decay using a simple square model

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

//Defne constants
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long double pi = 3.14159265, hc = 197.33, fsc = 1.44, mc2 = 3727.0,aa,bb;

long double psi[10000],r[10000],rmax,delr,sum,sqrint,xrint,e0,trans,hfreq;

long double del,fac,e,test0,test1,dele,z,c,rmaxint,rminint,xk;

long double r1,r2,gwidth,e0,v0,r0,anuc,phase;

int i,n,j,icheck,imax,ical1,ical2;

FILE *out1;

char fileout[20];

void ecalc();

void gfac();

void psicalc();

void ecalc()

{

imax=2000;

e=2.0;

psi[0] = 0.0;

psi[1] = 1.0;

del = 0.01;

//First try to get a starting test0

for (i=1; i<imax; i++)

{

r[i] = i*del;

fac = (z-2.0)*2.0*fsc/r[i];

if (r[i]<c) fac=2.0*fsc*(z-2.0)*(3.0/c-r[i]*r[i]/c/c/c)/2.0+v0;

psi[i+1] = 2*psi[i] - psi[i-1] - del*del*psi[i]*2*mc2/hc/hc*(e-fac);

}

test0=psi[imax-1];

//Loop to get estimate e0

dele=1.0;

for (j=1; j<200; j++)

{

e = e+dele;

psi[0] = 0.0;

psi[1] = 1.0;

for (i=1; i<imax; i++)

{

r[i] = i*del;
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fac = (z-2.0)*2.0*fsc/r[i];

if (r[i]<c) fac=2.0*fsc*(z-2.0)*(3.0/c-r[i]*r[i]/c/c/c)/2.0+v0;

psi[i+1] = 2*psi[i] - psi[i-1] - del*del*psi[i]*2*mc2/hc/hc*(e-fac);

}

test1=psi[imax-1];

if (test1*test0<0) dele = -dele/2.0;

test0 = test1;

}

e0=e;

printf("Quasi-bound energy = %25.24Lf +/- dele = %Le \n", e0, dele);

printf("psi[imax] = %25.24Lf psi[imax-1] = %25.24Lf \n", psi[imax-1],psi[imax-2]);

//Fine search for accurate value of e0

rmax=2.0*(z-2.0)*fsc/e;

del=0.01;

gfac();

dele=gwidth*100.0;

icheck=floor(rmax/del)+2000;

imax=icheck+400;

test0=0.0;

printf("imax = %d icheck = %d \n",imax,icheck);

for (j=1;j<200;j++)

{

e=e+dele;

psi[0] = 0.0;

psi[1] = 1.0;

for (i=1; i<imax; i++)

{

r[i] = i*del;

fac = (z-2.0)*2.0*fsc/r[i];

if (r[i]<c) fac=2.0*fsc*(z-2.0)*(3.0/c-r[i]*r[i]/c/c/c)/2.0+v0;

if (i>icheck) fac=0.0;

psi[i+1] = 2*psi[i] - psi[i-1] - del*del*psi[i]*2*mc2/hc/hc*(e-fac);

}

xk=sqrtl(e*2.0*mc2/hc/hc);

ical1=icheck+100;

ical2=icheck+110;

r1=ical1*del;

r2=ical2*del;
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aa=psi[ical1]*cos(xk*r2)-psi[ical2]*cos(xk*r1);

bb=psi[ical1]*sin(xk*r2)-psi[ical2]*sin(xk*r1);

test1=(aa*aa+bb*bb);

if(test1>test0) dele=-dele/2;

test0=test1;

}

e0=e;

printf("Quasi-bound energy = %25.24Lf +/- dele = %Le \n", e0, dele);

return;

}

void gfac()

{

sum=0.0;

rminint=c;

rmaxint=(z-2.0)*2.0*fsc/e;

printf("rmin= %Le rmax= %Le \n",rminint,rmaxint);

delr=(rmaxint-rminint)/10000.0;

for (j=0;j<10000;j++)

{

xrint=rminint+j*delr;

sqrint = (z-2.0)*2.0*fsc/xrint-e;

if (sqrint<0)

{

sqrint=0;

}

sum=sum+sqrtl(sqrint*2.0*mc2/hc/hc);

}

sum=sum*2.0*delr;

trans = exp(-sum);

hfreq=sqrt(2.0*(e-v0)/mc2)*hc/(2.0*c);

gwidth=trans*hfreq;

printf("e = %Le Trans Prob = %Le freq = %Le gwidth = %Le \n", e, trans, hfreq, gwidth);

}

// Calculate A^2 as a function of energy near resonance energy

void psicalc()

{
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rmax=2.0*(z-2.0)*fsc/e;

del=0.01;

icheck=floor(rmax/del)+2000;

imax=icheck+400;

printf("imax = %d icheck = %d \n",imax,icheck);

dele=gwidth/10;

for (j=-50;j<50;j++)

{

e=e0+j*dele;

psi[0] = 0.0;

psi[1] = 1.0;

for (i=1; i<imax; i++)

{

r[i] = i*del;

fac = (z-2.0)*2.0*fsc/r[i];

if (r[i]<c) fac=2.0*fsc*(z-2.0)*(3.0/c-r[i]*r[i]/c/c/c)/2.0+v0;

if (i>icheck) fac=0.0;

psi[i+1] = 2*psi[i] - psi[i-1] - del*del*psi[i]*2*mc2/hc/hc*(e-fac);

}

xk=sqrtl(e*2.0*mc2/hc/hc);

ical1=icheck+100;

ical2=icheck+110;

r1=ical1*del;

r2=ical2*del;

aa=psi[ical1]*cos(xk*r2)-psi[ical2]*cos(xk*r1);

bb=psi[ical1]*sin(xk*r2)-psi[ical2]*sin(xk*r1);

phase=atanl(aa/bb);

test0=(aa*aa+bb*bb)*expl(32);

//print data to file ampout.txt for gnuplot

fprintf(out1,"%d %25.24Lf \n",j, test0);

}

}

//Main Loop

int main()

{

out1=fopen("ampout.txt","w");

//I used r0=1.3 and A=219
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printf("Input the value of r0 and A: ");

scanf("%Lf %Lf", &r0, &anuc);

c=r0*pow(anuc,0.3333);

printf("The radius is %Lf \n",c);

//I used z=92 for U

printf("Input the value of z: ");

scanf("%Lf", &z);

//I used -111 to -112.4

printf("Input the value of V0: ");

scanf("%Lf", &v0);

del=0.01;

dele = 0.1;

ecalc();

printf("The energy is %25.24Lf \n",e);

gfac();

psicalc();

return (1);

}
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