
Relativistic Kinematics

The experimentalists measure the kaon momentum in the laboratory frame. How-
ever, it is better to do the analysis (theory) in the center of mass frame. The results
we obtain from the Born approximation holds in the center-of-mass reference frame.
So for a proper comparison, we need to use the kaon’s momentum in the center of
mass frame of the kaon and 12C. 800 MeV/c is the kaon’s momentum in the lab. I
obtain 740 MeV/c for the kaon’s momentum in the c.m. frame, and this value should
be used in our equation. Let’ see how we calculate the c.m. momentum from the lab
value.

It might have been a while since you covered relativistic kinematics in your classes,
and since high energy interactions is in the relativistic energy and momentum regime,
this is a good time to refresh our memory on the topic.

The total relativistic energy as well as the total relativistic momentum for a sys-
tem of particles are conserved quantities. The relationship between a particle’s (say
particle ”1”) energy, E1, and it’s momentum, ~p1 is:

E2
1 = m2

1c
4 + p2

1c
2 (1)

where p2
1 = ~p1 · ~p1. For a system that starts with two particles, a and b, and ends

with two particles, c and d, the conservation of total energy means:

Ea + Eb = Ec + Ed (2)

The conservation law holds if a and c, and/or b and d are different particles. Similarly,
momentum conservation for two particle interactions means:

~pa + ~pb = ~pc + ~pd (3)
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As an example, one can determine the momentum and energy of the pions in the
rho meson decay. The rho meson, ρ, can decay into two pions:

ρ→ π+ + π− (4)

In the rest frame of the ρ, the pions will travel in opposite direction with equal
momentum. This is true, since momentum is conserved. The conservation of energy
requires that:

Eρ = Eπ− + Eπ+

mρc
2 =

√
m2
πc

4 + p2c2 +
√
m2
πc

4 + p2c2

This equation can be solved for p to give

p = c
√

(mρ/2)2 −m2
π (5)

Using mρ = 775 MeV/c2, and mπ = 139 MeV/c2, one obtains p ≈ 362 MeV/c.

In addition to conserved quantities, invarient quantities, or invarients, are also
important. Invarients are expressions that are the same for all observers. For exam-
ple, for a particle E2 − p2c2 will equal m2c4 for any observer. The energy E and the
momentum p will depend on one’s reference frame, but the combination E2 − p2c2

will give the same value in all inertial reference frames.

A useful invarient quantity in particle physics is the invarient total energy,
√
s, of

the two particles, since it is the same in all reference frames. For two particles, the
invarient total energy squared, s, is given by:

s = (Ea + Eb)
2 − (~pa + ~pb)

2c2 (6)

where the squaring of the vector sum means the scalar product with itself.

2



To see the usefulness of the quantity s, or
√
s, consider the following example.

Suppose you wanted know what the threshold energy is to produce a particle of mass
(rest mass) M by scattering a particle of mass m1 at a target of mass m2, where m2

is initially at rest. Note: M > m1 +m2:

m1 +m2 →M (7)

The experiment is carried out in the lab reference frame. In this frame the total
invariant energy squared is

s = (E1 + E2)2 − (~p1 + ~p2)2c2

= (E1 +m2c
2)2 − p2

1c
2

= E2
1 + 2E1m2c

2 +m2
2c

4 − p2
1c

2

s = 2E1m2c
2 +m2

1c
4 +m2

2c
4

The total invarient energy is both conserved and invarient. Since it is conserved, its
value is the same before the interaction as after. Since it is invarient, we can equate
our expression to s in the center of mass frame. Thus, due to its invarience and
conservation, s in the lab frame before the interaction will equal s in the
center of mass frame after the interaction. After the interaction, there is only
one particle of mass M and it is at rest in the center of mass frame. The particle
M will be at rest, since we are interested in the threshold energy E1 to produce the
particle. Hence, s = M2c4 after the collision:

2E1m2c
2 +m2

1c
4 +m2

2c
4 = M2c4

or

E1 =
M2 −m2

1 −m2
2

2m2

c2
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Suppose we want to produce a delta particle, mass M = m∆ = 1232 MeV/c2, by
scattering a pion, mass mπ = 139 MeV/c2, off a proton, mass mp = 940 MeV/c2.
Then, to produce the ∆(1232) particle the pion needs to have a total energy of

Eπ =
12322 − 1392 − 9402

2(940)
≈ 327MeV (8)

or a kinetic energy in the lab frame of K.E. ≈ 327− 139 = 188MeV . If the pion has
an energy less than 327 MeV , then the ∆ particle cannot be produced. In this case,
most likely the pion would scatter elastically off the proton. If the pion has an energy
a little greater than 327 MeV , then the ∆ could be formed, which would decay back
into a pion plus proton. If the pion had enough energy, then a ∆ plus another particle
(a pion) could be the final particles produced.

Now let’s consider the kinematics involved in our assignment. We know the labo-
ratory momentum of the kaon, plab = 800 MeV/c. We need to know the momentum
of the kaon in the center of mass reference frame of the kaon and the nucleus (12C in
our case). The energy of the kaon in the lab frame is

EK =
√
m2
Kc

4 + p2
labc

2 (9)

It will be convenient to work with the total invarient energy. From the previous
calculation we know

s = m2
Kc

4 +m2
Nc

4 + 2EKmNc
2 (10)

where mN is the mass of the nucleus. Since s is an invarient, it’s value is the same
in all inertial reference frames. Thus, we can equate s in the lab frame to s in the
center of mass frame. This equality will allow us to calculate the kaon’s momentum
in the center of mass frame.
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For two particle systems, the two particles will have equal and opposite momenta
in the center-of-mass reference frame, ~p1 = −~p2. Letting |~p1| ≡ p, we have

s = (
√
m2

1c
4 + p2c2 +

√
m2

2c
4 + p2c2)2 − 02 (11)

The last term is zero, since ~p1 + ~p2 = 0. After a bit of algebra, one can solve for p in
the center of mass frame

p2 =
(s− (m1c

2 +m2c
2)2)(s− (m1c

2 −m2c
2)2)

4sc2
(12)

in terms of the total invarient energy squared, s.

With these equations, we can calculate the kaon’s momentum in the center of
mass frame in terms of its lab frame momenta, plab. First we determine EK in the
lab frame:

EK =
√
m2
Kc

4 + p2
labc

2 (13)

Then we calculate s in the lab frame.

s = m2
Kc

4 +m2
Nc

4 + 2EKmNc
2 (14)

Finally, we solve for p in the center-of-mass frame using

p2 =
(s− (mKc

2 +mNc
2)2)(s− (mKc

2 −mNc
2)2)

4sc2
(15)

For mK = 493 MeV/c2, mN = 12(940) MeV/c2, and plab = 800 MeV/c, I obtain
p = 740 MeV/c. I didn’t use my calculator, I just had the computer do the work
with the following code in my homework 3 code:

mkaon=493.0;
mnuc=12.0*940.0;
plab=800.0;
ekaon=sqrt(mkaon*mkaon+plab*plab);
s=mkaon*mkaon+mnuc*mnuc+2.0*ekaon*mnuc;
pc2=(s-(mkaon+mnuc)*(mkaon+mnuc))*(s-(mkaon-mnuc)*(mkaon-mnuc))/4.0/s;
pc=sqrt(pc2);
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