
Born Approximation and Numerical Integration

Often in physics problems one needs to evaluate a definate integral. If it is not
possible to find the ”anti-derivative” of the integrand then numerical methods may
be the only way to solve the problem. For our next assignment we will calculate
an integral that will give us an approximation to elastic scattering. The particular
problem we will do is to solve for K+ particles scattering off of nuclei. First I will
go over a simple way to do numerical integration for one variable. Then, we will talk
about the physics involved in scattering experiments, and an approximate method
for calculating cross sections: the Born Approximation.

Numerical Integration

Rectangle and Trapazoid Rules

Consider the definate integral,
∫ b
a f(x) dx. The integral is equal to the area under

the curve f(x) from a to b. Our task is then to estimate the area under this curve.
The simplest way is to divide the total area under the curve into small rectangles and
add up the areas of each small rectangle. Let the base of each rectangle be on the
x-axis and the height be the value f(x). We divide the x-axis into small segments of
equal length h. Then the sum of the areas of the rectangles is given by

∫ b

a
f(x) dx ≈ hf(a) + hf(a+ h) + hf(a+ 2h) + · · ·+ hf(b− h)

≈ h(f(a) + f(a+ h) + f(a+ 2h) + · · ·+ f(b− h))

The smaller that h is, the better the approximation. We can write this expression in
summation notation as follows:

∫ b

a
≈

N−1∑
n=0

h f(a+ nh) (1)

where n is an integer and h = (b− a)/N . The larger that N is, the more accurate is
the sum.
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One can do slightly better by using trapazoids instead of rectangles. The area
of a trapazoid with a base h, a left height of f(a) and a right height of f(a + h) is
h(f(a) + f(a+ h))/2. Using trapazoids instead of rectangles yields

∫ b

a
f(x) dx ≈ h

f(a) + f(a+ h)

2
+ h

f(a+ h) + f(a+ 2h)

2
+ · · ·

≈ h(
f(a)

2
+ f(a+ h) + f(a+ 2h) + · · ·+ f(a+ (N − 1)h) +

f(b)

2
)∫ b

a
f(x) dx ≈ h(

f(a)

2
+

N−1∑
n=1

h f(a+ nh) +
f(b)

2
)

where n is an integer and h = (b− a)/h. As before, the approximation gets better as
N →∞. Also note that this expression is exact if f(x) is a line.

There are other algorithms that are used to carry out numerical integation. At
the end of these notes I have summarize another simple one, Simpson’s rule. If time
allows, I’ll summarize the method of Gaussian Quadrature. Now, lets go over the
integral in your assignment and discuss the physics behind the integral.
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Scattering Experiments

Scattering experiments are often carried out to understand the interaction be-
tween elementary particles as well as information on the excited states of nuclei and
particles. Basically, one uses a beam of particles, all with the same momentum, that
”hits” a target. One can also have colliding beams. One measures the probability
that a particle in the beam will be scattered off at a particular angle. Let’s define
some terms:

Incident Flux: The number of particles per area per time.

Solid Angle: If the detector has an area A and is a distance r from the target, then
the solid angle is ∆Ω ≡ A/r2. The full solid angle, a spherical shell, is 4πr2/r2 = 4π.
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Differential Cross section: The number of particles detected per sec per incident
flux per solid angle. It is given the symbol σ(θ, φ), or (dσ)/(dΩ). For unpolarized
targets and beams, the differential cross section will only depend on θ, the scattering
angle, and is labeled as σ(θ)

Total Cross section: The total number of particles scattered. The total cross sec-
tion σ equals the differential cross section integrated over all solid angle: σtotal =∫
σ(θ, φ)dΩ.

A graph of the differential cross section for K+ particles scattering off 12C is given
on the next page. The units for the differential cross section are Area/(solid angle),
and the units for the total cross section is Area. The area represented by the total
cross section can be thought of as follows: It is the effective area per target such that
if the particle ”hits” this area it is scattered.

The cross sectional area of a nucleon is around πr2 ≈ π fm2, since the nucleon ra-
dius is around one Fermi. The nucleon’s cross sectional area is thus around 10−30 fm2

or 10−26 cm2. The unit for area in nuclear and particle physics is the barn, which is
defined as 1 barn ≡ 10−24 cm2 = 100 fm2. A barn is around 100 times the area of a
nucleon, and is quite large on the nuclear scale. Note that the units on the graph for
the differential cross section, σ(θ) are milli-barns per ster-radian (mb/sr).
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Calculating the Cross Section

If the interaction between the incident particle and the target can be treated
non-relativistically and be represented by a potential energy function V (r), then
the scattering cross section can be calculated using the Schroedinger equation. For
our assignment we will use an approximation to the differential cross section that
only requires the computation of an integral. The approximation is called ”the Born
approximation”. If you are interested in how it is derived, you can look at my previous
notes or an undergraduate quantum text. At the heart of the approximation is the
evaluation of the following integral:∫ ∞

0
V (r)rsin(qr)dr (2)

where we will take V (r) = V0/(1 + e(r−R)/a). The quantity q = p/h̄ and represents
the momentum/h̄ that is transfered to the target. In terms of the kaon’s momentum
p and the scattering angle, θ, q = 2pc/(h̄c)sin(θ/2). As before, we will take the size
of the potential to be the size of the nucleus, so R = 1.28A1/3 fm. We will take
a = 0.6 fm. The cross section is most easily expressed in terms of the scattring
amplitude, f(θ). The Born approximation gives:

f(θ) = − 1

h̄c

mc2

pc

1

sin(θ/2)

∫ ∞
0

V (r)rsin(qr)dr (3)

for the scattering amplitude. In terms of the scattering amplitude, the differential
cross section is

dσ

dΩ
= |f(θ)|2 (4)

Putting everything together, the differential cross section is

σ(θ) = | − 1

h̄c

mc2

pc

1

sin(θ/2)

∫ ∞
0

V (r)rsin(qr)dr|2 (5)
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The Born Approximation

The Born approximation can be derived from time dependent perturbation theory.
The probability for a transition to occur from an initial state ψi ∝ eiki·r to a final
state ψf ∝ eikf ·r (where k = p/h̄) is proportional to the matrix element

< ψf |V |ψi > ∝
∫ ∞
0

V (r)ei(
~kf−~ki)·~rd3~r (6)

This integral, which is the Fourier transform of V(r) with respect to the momentum
transfer, produces a scattering diffraction pattern. The kinematics enters the problem
only with the momentum transfer, which is most conveniently defined as ~q = ~kf−~ki =
(~pf − ~pi)/h̄.

< ψf |V |ψi > ∝
∫ ∞
0

V (r)ei~q·~rd3~r (7)

At first glance, the integral looks difficult. However, if we choose the coordi-
nate system for the integral such that the z-axis is directed along ~q, then ~q · ~r =
|q| |r| cos(α) = qr cos(α), where α is the angle between ~q and ~r. With this choice of
coordinate system, the integral becomes:∫ ∞

0
V (r)ei~q·~rd3~r =

∫ ∞
0

V (r)
∫ π

0
eiqrcos(α)2πsin(α) dαr2dr (8)

The angular part of the integral can be evaluated since sin(α) is the derivative of
cos(α):

∫ ∞
0

V (r)eiqrcos(α)2πsin(α)r2 dαdr =
∫ ∞
0

V (r)2π(
−eiqrcos(α)

iqr
)|π0r2dr

=
∫
V (r)2π

eiqr − e−iqr

iqr
r2dr

=
4π

q

∫ ∞
0

V (r)r sin(qr)dr

which is the integral you need to solve numerically.
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Note that the angle enters through q, since q = (2p/h̄)sin(θ/2). When integrating
over r, sin(qr) can change sign and the integral can be zero. That is, there can be
angles where this integral will be zero. The cancelation in the integral is in essence
destructive interference from the particle scattering off different parts of the target.
One sees the same effect in double slit interference. As with the double slit interference
pattern, the interference occurs at smaller angles for larger targets. This effect is seen
in the comparison of the K+ scattering data off 12C versus 40Ca. The diffraction
interference occurs at around 28◦ for 12C and around 17◦ for 40Ca for kaons with the
same momentum.

If V (r) is proportional to the density of the target, this integral is often refered
to as the form factor of the interaction.
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Simpson’s Rule

The trapaziod rule used two values of f(x) for each interval, and is exact if f(x) is
a line. One can do a little bit better using equal spacing and three values of f(x). We
will derive in class the following formula for the area under a parabola using values
of the function evaluated at x− h, x, and x+ h:

AREA = h(
f(x− h)

3
+

4f(x)

3
+
f(x+ h)

3
) (9)

We can do the same treatment with parabola fits that we did with trapazoids. We
divide the interval from a to b into N equal segments. For each consequitive triplet
of segments we can use the parabola formula above. The sum over all the segments
is:

∫ b

a
f(x) dx ≈ h((

f(a)

3
+

4f(a+ h)

3
+
f(a+ 2h)

3
) +

(
f(a+ 2h)

3
+

4f(a+ 3h)

3
+
f(a+ 4h)

3
) +

(
f(a+ 4h)

3
+

4f(a+ 5h)

3
+
f(a+ 6h)

3
) + · · ·)

Notice that the even increments of h are counted twice resulting in a 2/3 factor on
even multiples of h:

∫ b

a
f(x) dx ≈ h(

f(a)

3
+

4f(a+ h)

3
+

2f(a+ 2h)

3
+

4f(a+ 3h)

3
+

2f(a+ 4h)

3
+

4f(a+ 5h)

3
+

· · ·+ 4f(a+ (N − 1)h)

3
+

2f(b)

3
)

where h = (b − a)/N and N must be an even number. N must be even so that the
function is evaluated at an odd number of points. This is to insure that the triplet
of evenly spaced segments fits properly into the interval between a and b.

The parabolic formula for numerical integration is called Simpson’s Rule. It is
exact if f(x) is a parabola.
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