
Using the Pseudo-Random Number generator
Generating random numbers is a useful technique in many numerical applications

in Physics. This is because many phenomena in physics are random, and algorithms
that use random numbers have applications in scientific problems.

Most compilers come with a pseudo-random number generator. These generators
use a numerical algorithm to produce a sequence of numbers that have many prop-
erties of truly random numbers. Although the sequence of pseudo-random numbers
is not truly random, a good generator will produce numbers that give essentially
the same results as truly random numbers. Most generators determine the pseudo-
random number from previous ones via a formula. Once an initial number(s) (or
seed(s)) is chosen, then the algorithm can generate the pseudo-random series.

A Simple Pseudo Random Number algorithm

A simple algorithm that will generate a sequence of integers between 0 and m is:

xn+1 = (axn + b) mod(m) (1)

where a and b are constant integers. A sequence of integers xi is produced by this
algorithm. Since all the integers, xi, generated are less than m, the sequence will
eventually repeat. To have the period for repeating to be as large as possible, we
want to chose m to be as large as possible. If m is very large, there is no guarantee
that all integers less than m will be included in the sequence, nor is there a guarantee
that the integers in the sequence will be uniformly distributed between 0 and m.
However, for large m both these two properties are nearly satisfied and the algorithm
works fairly well as a pseudo-random number generator.

For a 32-bit machine, a good choice of values are a = 75, b = 0, and m = 231 − 1,
which is a Mersenne prime number. Usually, one does not need to make up one’s own
pseudo-random number generator. Most C compilers have one built in.

Pseudo Random Numbers in C

There are various commands in C for generating random numbers. A common
one is

random(32767)

This command returns a number with the properties of a random number with equal
probability to lie between 0 and 32767 = 216 − 1. That is, a 16 bit random number

1



with uniform probability. To obtain a pseudo-random number between 0 and 1, the
line of code:

r = random(32767)/32767.0;

does the trick. One can also include a line of code that sets the initial seed, or have
the program pick a ”random” seed. To generate a random number with uniform
probability between a and b, the following code should work:

r = random(32767)/32767.0;
x = a + r*(b-a);

Generating a non-uniform probability distribution
Sometimes it is useful to generate random numbers that do not have a uniform

distribution. This is fairly easy for the case of discrete outcomes. In this case, each
discrete outcome i has a probability Pi of occuring, where the index i is countable
(say from 1 to integer imax). Note that Pi are unitless. For example suppose that you
want to simulate an unfair coin: the coin is heads 40% of the time and tails 60% of
the time. The following code does the task:

r = random(32767)/32767.0;
if (r ≤ 0.4) then heads;
if (r > 0.4) then tails;

In this example, one ”throws” r with uniform probability distribution between zero
and one. One then divides the interval between zero and one into the probability
desired for the outcomes.

Often the outcome can be continuous. In this case the probabilities are represented
as a probability density. Suppose the outcome is the continuous variable x, and the
probability density P (x). Then, P (x)dx is the probability that the outcome lies
between x and x + dx. Note that P (x) has units of 1/(units of x), since P (x)dx is
unitless. Also note that normalization requires that

∫
P (x)dx = 1.

One can generate random numbers x with probabililty density P (x) in a similar
way as the discrete case. Below we describe the method, which will be proven in
lecture:

2



1. Obtain a random number r with uniform probability between 0 and 1. That is, r
= random(32767)/32767.0;

2. Solve the following integral for x:

r =
∫ x

0
P (u)du (2)

x will be pseudo-random with a probability density P (x).
We demonstrate this method with a simple example. Suppose you wanted to

generate random numbers x between 0 and 1 with a probability density proportional
to x: P (x) = Cx, where C is a constant. Normalization requires

∫ 1
0 Cxdx = C/2 = 1.

So C = 2. Thus, the normalized probability density is P (x) = 2x. Now we need to
relate x to r, which can be done by solving the integral above.

r =
∫ x

0
2udu

r = x2

or x =
√

r. A sample of code that would generate real numbers x with the probability
density P (x) = 2x might look like:

r = random(32767)/32767.0;
x = sqrt(r);

An important continuous non-uniform probability density is the Gaussian or Nor-
mal distribution with standard deviation σ:

P (x) =
1√
2πσ

e−x2/(2σ2) (3)

The following code, which will be explained in lecture, will generate random numbers
x with a Gaussian probability distribution:

r1 = random(32767)/32767.0;
r2 = random(32767)/32767.0;
r = s * sqrt(-2*ln(1-r1)) ;
theta = 2*pi*r2;
x = r * sin(theta);

3



where s is the standard deviation.

Metropolis Algorithm (Monte Carlo)
The pseudo-random number generator is useful in evaluating multi-dimensional

integrals, particularly those found in statistical mechanics. In statistical mechanics
one often has to add up, or integrate, functions over configuration space, which is
quite large. Sums of the form:

∑
µ f(µ)w(µ)

where f(µ) is some function of configuration ”µ” of the system with probability w(µ)
of occuring. The sum is over all possible configurations µ. For simplicity let’s suppose
that the number of possible configurations is finite and equal to Ntot. We can map
each of the Ntot configurations to an integer. That is, µ will be an integer between 1
and Ntot.

One can evaluate this sum approximately by using a random walk method in
”configuration space”. The random walk will produce a sequence of configurations.
For example, suppose Ntot = 3 and we label the thre possible configurations as 1, 2,
or 3. That is µ equals 1, 2, or 3. A random walk sequence of configurations would be
a random sequence of numbers that are 1, 2, or 3:

2, 3, 1, 1, 2, 1, 3, ...
We can label the j’th configuration in the sequence as µj. For example, in the sequence
above, µ1 = 2, µ2 = 3, and µ6 = 1. Let Nsteps be the number of steps in the random
walk. If Nsteps >> Ntot the random walk will visit each configuration many times.
Let N(µ) be the number of times we visit the configuration µ in the random walk. If
we carry out the random walk such a way that N(µ) = Nstepsw(µ), then the random
walk will be useful in evaluating the sum over configurations. This can be seen as
follows. The sum over configurations can be written as:

∑
µ

f(µ)w(µ) =
∑
µ

f(µ)
N(µ)

Nsteps

(4)

Note that the ”trick” is to have the random walk visit the configuration µ a number
of times N(µ) such that N(µ) = Nstepsw(µ). However, the sum

∑
µ f(µ)N(µ)/Nsteps

is equal to the sum (
∑

j f(µj))/Nsteps since Nsteps factors out of the sum. Thus, we
have

∑
j f(µj)

Nsteps

=
∑
j

f(µj)
N(µj)

Nsteps

=
∑
µ

f(µ)w(µ) (5)

4



which is what we wanted to calculate. This is a nice result. We just need to do the
sum of f(µj) for a random walk through configuration space such that the sites µ are
visited w(µ)Nstep times. The trick is to find a way to generate an appropriate random
walk. The algorithm of Metropolis et. al. is a clever way to produce such a random
walk. Next, we state and justify the algorithm. An example program is located on the
sample program web page, which allows you to check that the Metropolis algorithm
has the desired characteristics.

Random Walk of Metropolis et. al.

The Metropolis et. al. algorithm (or Monte Carlo algorithm) is a method to ob-
tain the (j + 1)th element, µj+1, in the series from the jth element in the series, µj.
The method is as follows:

1. Pick a trial configuration µt randomly, which is ”close” to µj.
2. If w(µt) ≥ w(µj), then µj+1 = µt.
3. If w(µt) < w(µj), then µj+1 = µt with probability r = w(µt)/w(µj), and µj+1 = µj

with probability (1 − r).

One can understand why the random walk guided by these rules yields the correct
probability as follows. Consider two configurations that could be in the random
walk: µ and ν. Let’s also suppose that w(ν) < w(µ). Let P (µ → ν) represent the
probability that ν is the next element in the random walk after µ if ν is chosen as
the trial step. According to the rules above, P (µ → ν) = w(ν)/w(µ). Let P (ν → µ)
represent the probabililty that µ is chosen after ν in the random walk if µ is the
trial step. According to the rules of Metropolis, P (ν → µ) = 1 since w(µ) < w(ν).
Therefore, we have:

P (µ → ν)

P (ν → µ)
=

w(ν)

w(µ)
(6)

We will next show that this condition will lead to N(ν)/N(µ) = w(ν)/w(µ) for any
two configurations µ and ν. Thus, the random walk will sample the configuration
space with the number of visits per site proportional to the probability for the site.

Consider a finite size configuration space with Ntot sites. Each one is mapped to
an integer µ as before. Suppose we have Mtot random walkers where Mtot >> Ntot,
and that the walkers all change sites, ”jump”, at the same time. Let mµ be the
number of walkers at site µ at a certain time step. Then, the change in mµ, ∆mµ,
after the next step is given by:

5



∆mµ =
∑
ν 6=µ

(+mνP (ν → µ) − mµP (µ → ν)) (7)

where as before P (µ → ν) is the probability that a random walker will ”jump” from
configuration (or site) µ to configuration (or site) ν. The term on the left represents
the number of walkers that jump to site µ, and the term on the right is the number of
walkers that leave site µ and jump to site ν. After many many steps, Nlarge the system
of random walkers will stabilize, and the average number of walkers at each site will
not change. That is, eventually, ∆mµ ≈ 0 for each configuration µ. A solution to the
steady state condition is for each term to vanish:

mνP (ν → µ) = mµP (µ → ν)

mν

mµ

=
P (µ → ν)

P (ν → µ)

after Nlarge steps. Suppose that there was one random walker that carried out
NlargeMtot steps. Then the number of times the walker visited site µ would be Nlargemµ

times. Multiplying the numerator and denominator of the left side of the above equa-
tion by Nlarge yields:

N(ν)

N(µ)
=

P (µ → ν)

P (ν → µ)
(8)

The above argument demonstrates that for a random walk for which Nsteps >>> Ntot

the ratio of the number of visits to site ν, N(ν) divided by the number of visits to
site µ, N(µ) equals the inverse ratio of the probabilities for jumping between the two
sites. Therefore, if

P (µ → ν)

P (ν → µ)
=

w(ν)

w(µ)
(9)

then

N(ν)

N(µ)
=

P (µ → ν)

P (ν → µ)
=

w(ν)

w(µ)
(10)

and the random walk will visit the configurations the correct number of times to give
a correct estimate of the sum

∑
µ f(µ)w(µ). The Metropolis Algorithm satisfies this

requirement.

6


