
Lecture 10

Resonances

When examining the cross section of two particles interacting as a function of
energy, sometimes the cross section is observed to have a peak at a particular energy.
The peaks are refered to as resonances, a term borrowed from mechanics when a
system responds with a large amplitude at a particular driving frequency. In particle
physics, a resonance is often caused by the creation of a particle, whose mass-energy
is the energy of the resonance.

This property is shown in the following two graphs. The experiment involves
scattering a µ+ and its anti-particle µ−. The total cross section, σ is measured as a
function of the center-of-mass total invarient mass-energy

√
s. As seen in the figure,

there are well defined peaks in the cross section at particular energies. Most of the
peaks are identified with quark-antiquark (qq̄) bound states. One peak is caused by
the Z particle. Note that some of the qq̄ peaks are associated with excited states,
and others with the ground qq̄ state.

In your current assignment, you have data of the total cross section, σ, for electron-
antielectron scattering as a function of invarient mass near 90 GeV , the mass of the
Z. You are to try and fit the cross section peak with a Lorentzian function. Why
do we expect the shape of the peak to be a Lorentzian function? Our current theory
of particle physics describes all interactions using vertices, propagators and coupling
constants. The reasoning behind this picture requires a study of relativistic quantum
mechanics. Here, we will give an overview of two ways resonances can occur: an
s-channel resonance and a t-channel resonance.
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s-channel resonances

From quantum field theory, the contributions to the probability amplitude density
for a particular scattering process can be represented by diagrams, Feynman diagrams.
The complete scattering probability amplitude is the sum of all such diagrams possible
in going from the initial state to the final state of the two particles.

For example, suppose particle A and B scatter off of each other elastically. One
contribution to the scattering process is described in the diagram. The way one would
interpret the diagram is as follows. A and B come together and form a new particle,
particle C. Particle C exists for a while, then decays into A and B. In quantum field
theory there are rules that guide one in calculating the probability amplitude for this
contibution to the complete scattering amplitude.

A ”coupling constant” is assigned to every vertex, in this case the vertex of A, B,
and C. Note, that there are two ABC vertices. Each of these two vertices will have
the same coupling constant, say g. The particle C ”propagates” in space and time
before it decays. There is an expression representing this propagation: 1/(s −m2

C).
Here, s is the invarient energy of particle C, s = E2

C − p2
C . You might think that this

expression is trivial. Isn’t E2 − p2 equal to m2 for every particle? Not necessarily. If
the particle is ”on-shell” or ”real”, then E2 = m2 + p2. However, in theory a particle
can have an energy E and a momentum p such that E2 − p2 6= m2. If E2 − p2 6= m2

the particle is said to be virtual, or off-shell.
In an experiment, one can only directly measure particles that are on-shell. Every

time a particle can be directly measured, E2− p2 will equal the same value, it’s mass
m2. Virtual particles exist in the calculation of measureable quantities. Quarks,
for example, have never been observed on-shell. A free quark, i.e. with energy E
and momentum p, has never been observed, thus their mass has never been directly
measured. Quark masses are parameters in our current theories.
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For the diagram in which A and B couple to C, the probability amplitude M is
proportional to the product of the coupling constants times the propagator:

M ∝ g2

s−m2
C

(1)

In the center of mass frame of the two particles, s = (EA + EB)2, since the
momentum of A is opposite to B. So, in the center of mass frame, the probability
amplitude is proportional to:

M ∝ g2

(EA + EB)2 −m2
C

(2)

This expression by itself is problematic. If EA + EB = mC , then the right side of
the equation is undefined (the denominator equals zero). Except for this problem, one
can see that if EA+EB is near mC then M and consequently the cross section becomes
large (i.e. a resonance). This singularity is resolved when all possible diagrams are
added up. For example, one such diagram is shown. The particle C decays into A+B,
with combines again to form C, which then decays into the final states of A+B.

One way to handle the singularity at EA+EB = mC is to assign a complex number
to the mass of the decaying particle. The reason this is justified is as follows. For a
free particle that doesn’t decay, the time evolution of the state goes (relativistically)
as

Ψ(t) ∝ e−i(mc
2/h̄)t (3)

If a particle or state can decay, then the time evolution of the probability density in
time goes as

Ψ∗Ψ ∝ e−t/τ (4)

where τ is the lifetime of the state. In terms of Ψ the above equation implies that

Ψ(t) ∝ e−t/(2τ) (5)
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Combining the decay property with a transiently free particle yields

Ψ(t) ∝ e−i(m0c2/h̄−i/(2τ))t (6)

for the time part of the ”wave function” Ψ(t). If we want to assign a mass to a state
that decays, the mass must have an imaginary part. In terms of the Full Width at
Half Maximum Γ, the imaginary part will be iΓ/2. Thus the mass of a state that
decays can be written as m = m0 − iΓ/2. All diagrams that start with A+B to C,
and end with C decaying to A+B can be treated as a single diagram with particle
C as the propagator with mass mC = m0 − iΓ/2. The real part of C’s mass is the
energy where the resonance peaks, and the imaginary part is related to the lifetime
of the particle.

The lifetime τ and Γ are related to each other. Equating the time dependent parts
of the two expressions for Ψ∗Ψ to each other gives

|e−t/(2τ)|2 ∼ |e−imCc
2t/h̄|2

e−t/τ ∼ |e−i(m0−iΓ/2)c2t/h̄|2

e−t/τ ∼ e−Γtc2/h̄

In units where c is unity, we have

Γ =
h̄

τ
(7)

If a particle is not stable the probability density for it to exist for a time t is
proportional to e−t/τ . The average amount of time it will exist is τ with a standard
deviation also equal to τ . When it exists, one never knows what mass energy it
will have. Measuring it many times, the average mass it will have will be m0 with
a standard deviation of Γ. These standard deviations are related inversely to
each other, and we have

Γτ ∼ h̄ (8)
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The relationship between the mass-energy and lifetime standard deviations is ref-
ered to as the Heisenberg uncertainty principle for energy and time. If a particle has
a lifetime greater than 10−10 sec, then usually the lifetime of the particle is listed in
the data tables. For example the neutron, pion, kaon, lambda, sigma and nuclear
excited states have their lifetimes listed. If a particle has a very short lifetime, then
the width of the peak, Γ is listed in the tables. For example the ρ and ω mesons,
the baryon resonances, and the W and Z0 particles fall into this catagory. Often it
is easier to measure the lifetime, τ , instead of Γ, and sometimes the peak width is
easier to measure. It is easy to switch between the two quantities, since Γ = h̄/τ .

The probability amplitude at an energy near the mass of C is therefore approxi-
mately

M ∝ g2

(EA + EB)2 − (m0 − iΓ/2)2
(9)

or

M ∝ g2

s− (m0 − iΓ/2)2
(10)

Factoring the denominator we have

M ∝ g2

(
√
s+ (m0 − iΓ/2))(

√
s− (m0 − iΓ/2))

(11)

When the energy is near m0, i.e.
√
s ≈ m0, the first term in the denominator does

not change significantly with energy compared to the second term. So,

M ∼ 1√
s− (m0 − iΓ/2)

(12)
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The cross section is proportional to the square of M :

σ ∼ M∗M

∼ 1

(
√
s−m0)− iΓ/2)

1

(
√
s−m0) + iΓ/2)

∼ 1

(
√
s−m0)2 + (Γ/2)2

which is a Lorentzian function. Choosing the normalizing constant to be σmax(Γ/2)2

the cross section can be written in the form

σ = σmax
(Γ/2)2

(
√
s−m0)2 + (Γ/2)2

(13)

where σmax is the value of the cross section at the peak.

t-channel Resonances

A resonance, or peak in the cross section, can also occur without forming a ”new”
particle. The basis of such a process is shown in the figure. Particle A interacts
with particle B by the ”exchange” of particle D. This diagram by itself cannot pro-
duce a resonance. However, one needs to add the diagram that has two particle D’s
exchanged, plus one with three particle D’s exchanged, etc. The infinite sum of all
possible ”ladder” contributions can cause a resonance peak in the cross section. Using
time-dependent perturbation theory, one can show that the infinite sum of the ladder
diagrams for an exchange particle with mass mD is equal (in the non-relativistic ap-
proximation) to solving the (non-relativistic) Schroedinger equation with a potential
V (r) ∝ e−mDr/r.
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