
Review of the Formalism of Quantum Mechanics

The ”postulates of quantum mechanics” are often stated in textbooks. There are
two main properties of ”physics” upon which these postulates are based: 1)the prob-
ability of interactions (measurements) and 2) the interference properties of
the probability amplitudes. This review is meant to help students understand the
”physics” underlying the formalism of quantum mechanics.

Two classic experiments will guide us in understanding the required mathemati-
cal formalism of QM: Stern-Gerlach experiment and the double slit interference ex-
periment. In the Stern-Gerlach experiment the outcomes are discrete, and one has
continuous outcomes in the double slit experiment. We start with the Stern-Gerlach
experiment.

Stern-Gerlach Experiment (Discrete Outcomes)

The experiment involves sending a neutral atom that has a magnetic moment into
a non-uniform magnetic field. The simplest case is when the atom has a ”spin” of 1/2.
Let the axis of the Stern-Gerlach (SG) apparatus be in the direction of the gradient
of the magnetic field. Then the force on the atom will be along the axis.

Experiment 1:
Send unpolarized atoms into an SG apparatus that has it’s axis in the vertical direc-
tion (i.e. up). The result is that they are deflected up a certain amount or down the
same amount. If they are allowed to impinge on a screen, one does not see a contin-
uous smearing of the atoms, but rather two distinct spots. The outcomes are
discrete. The discreteness of the outcomes was not expected, and is a remarkable
result. If the atoms are truly unpolarized, then one can not determine what they
will do. Half the time an atom will go up, and half the time the atom will go down.
There is a true probabilty of 1/2 for each outcome. You might expect this, since the
initial state was random. The randomness in this experiment is not astonishing, the
discreteness is.

Experiment 2:
We now take the atoms that went up and send them though an identical SG appara-
tus. The result is that these atoms go up every time. Likewise, if we take the atoms
that went down and send them though an identical SG apparatus, they will go down
every time. We can label the atoms that will go up every time as being in the ”up
state”. Likewise, we can label the atoms that will go down every time as being in the
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”down state”. Remember that ”up” and ”down” is in the direction of the axis of the
SG setup.

Experiment 3:
We now take the atoms that went up through a vertical SG apparatus, and send
them through an SG apparatus that has its axis tilted by an angle θ with the vertical
in a plane perpendicular to the direction of the atoms. After passing through the
tilted SG apparatus, the atoms will be deflected in a direction along the tilted axis.
Whether they get deflected ”up” or ”down” the axis is random, with a probability
equal to cos2(θ/2) to be deflected ”up”. The probability to be deflected ”down” the
axis is sin2(θ/2).

This is an interesting result. The atoms are initially not unpolarized, they are
in a definite state. There is no randomness in the initial state, before they enter
the tilted SG apparatus. However, the outcome is random. This is remarkable! The
probability of outcomes from a definite state is demonstrated in every quantum ex-
periment from decays to scattering experiments.

We note that if the atoms that went ”up” through the tilted SG apparatus are
sent though an identical tilted SG apparatus, they will always be deflected ”up”. The
same will be true for the atoms deflected ”down” through the tilted SG apparatus.
Here ”up” and ”down” refer to along the tilted axis.

Double Slit Experiment (Continuous Outcomes)

In these experiments electrons (or photons) of a definite energy impinge on a
screen with either one or two slits. After passing through the slit(s) the electrons (or
photons) land on a wall.

Experiment 4:
Electrons impinge on a screen with one slit. Suppose the slit opening is in the ”x”
direction, and the electrons are traveling in the ”y” direction. If the slit is small
enough, then the electrons make a smeared out pattern when they hit the wall. The
pattern is the same as a single slit diffraction pattern that waves would make. If the
slit is made smaller, then the pattern is more spread out. The electrons arrive one
at a time, but one cannot predict where a single electron will land. The outcome is
probabilistic, with the probability proportional to the intensity of a single slit diffrac-
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tion pattern.

Once an electron has arrived at the wall, then it’s momentum in the x-direction,
px, is determined. px is measured since the time to hit the wall is known (from py)
as well as the distance in the x-direction from the slit. The further away the electron
has traveled from the center of the slit center, the larger px is. Thus, the probability
that an electron has momentum px is proportional to the intensity of a single slit
diffraction pattern. The outcomes of this experiment are continuous, and the proba-
bility is a different mathematical quantity than in the case of discrete outcomes for
which the probability is unitless. For continuous outcomes, the probability will be a
probability density. The units of probability density is 1/(units of the continuous
outcome).

We note that as the slit opening ∆x gets smaller, then the probability distribution
for px becomes more spread out. x and px are called congugate quantities. Every
continuous outcome has a corresponding congugate quantity.

Experiment 5

In this experiment electrons impinge on a screen with two very thin slits that are
closely spaced. If one slit is covered, the electrons arrive at the wall with a spread
out probability distribution as in the last experiment. If the other slit is covered,
electrons arrive at the wall with a spread out probability distribution that is shifted
slightly from the previous one with the first slit covered.

Now when both slits are open, the electrons hit the wall one at a time randomly
as before. However, the probability distribution is NOT equal to the normalized sum
of the probability distributions of each slit separately! An interference effect occurs.
The probability distribution is one of bands of high and low probability, similar to a
two slit interference pattern for waves.

How can we understand the experimental fact that the electrons arrive at the wall
one at a time, in a random manner with a probability distribution that exhibits ”in-
terference” properties? Adding the probability distributions from each slit does not
agree with experiment. The interference pattern on the wall can be understood from
the superposition of probability amplitudes as follows. The probability amplitude
for the electron to land at a certain point on the screen is the sum of the proba-
bility amplitude for the electron to pass through the right slit plus the probability
amplitude for the electron to pass through the left slit. The probability itself is the
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absolute square of the total probability amplitude. For the double slip experiment
the probability ampliude for passing though each slit is proportional to eipd/h̄, where
p is the momentum of the electron in the ”x” direction and d is the total distance
traveled from source to the wall. The total probability amplitude is:

Probamp ∝ eipd1/h̄ + eipd2/h̄ (1)

The probability (or probability density) is just the absolute square of the probability
amplitude or:

Prob ∝ |eipd1/h̄ + eipd2/h̄|2 (2)

∝ (e−ipd1/h̄ + e−ipd2/h̄)(eipd1/h̄ + eipd2/h̄) (3)

∝ 2 + 2 cos(
p(d2 − d1)

h̄
) (4)

∝ cos2(
p∆d

h̄
) (5)

Prob ∝ cos2(
π∆d

λ
) (6)

where λ = h̄/py is the DeBroglie wavelength of the electron, and ∆d = d2 − d1 is the
difference in the distance the particle takes going through the right versus the left
slit. This formula agrees with the double slit interference experiment, as discussed
in your sophmore level modern physics class. There is no chance for the particle to
land at points on the screen where the path difference ∆d is half a ”wavelength”,
and maximum when ∆d is an integral multiple of a ”wavelength”. Calling h̄/py a
”wavelength” is somewhat misleading, since nothing is waving. However, we will use
this term and remember that there is no waving going on. The distance h̄/py can be
thought of as an interference-length.

Stern-Gerlach Revisited

Will one observe ”interference” effects with the Stern-Gerlach apparatus? Yes.
Consider the following experiment.

Experiment 6
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Suppose we set up three successive Stern-Gerlach apparatus. The first and third
(last) one have their axis pointing vertical, and the second (middle) apparatus with
it’s axis tilted 90◦ with respect to the other two. Now, send un-polarized atoms into
the three Stern-Gerlach apparatus, which are in series. After passing through the
first SG apparatus, stop all atoms that are forced downward. That is, let only ”up”
atoms continue through the other two SG setups.

After the second SG apparatus, half of the electrons will be forced ”right” and
half will go left. Stop those going ”left”. Then, after going though the final SG setup,
half of those left will go ”up” and half will go ”down”. So, of the ”up” atoms entering
the last two setups, 1/4 will go ”up” and 1/4 will go ”down”. We lost half of the
atoms since we blocked atoms going ”left” in the middle SG setup.

Now, repeat the experiment, but this time block those going ”right” in the middle
SG setup. That is, let only those going left pass through onto the final SG setup. As
before, after emerging from the last SG setup, 1/4 will be force ”up” and 1/4 will go
down. So, of the ”up” atoms entering the last two setups, 1/4 will go ”up” and 1/4
will go ”down”. We lost half of the atoms since we blocked atoms going ”right” in
the middle SG setup.

Finally, run the experiment but do not block any of the atoms in the middle setup.
That is, let all the original ”up” atoms go through both of the last two SG setups.
What will happen? How many atoms will go ”up” and/or down after passing though
the last two SG setups? If one simply adds the probabilities of going right plus left
through the middle SG setup, one would guess that half go ”up” and half go ”down”:
1/4 + 1/4 = 1/2. However, this is not what happens in the experiment. They ALL
go ”up” and none go ”down”. One has to add the probability amplitudes, and the
amplitudes cancel for the atoms to go down. Note: a word of caution. The SG setups
must be close enough so that if an atom goes up at the end, one cannot distinguish
if it went ”right” or ”left” through the middle SG setup. That is, the atom must be
able to arrive at the same spot by either going ”right” or ”left” through the middle
SG setup. If this is the case, then the amplitudes will add.

Mathematical Formalism

What type of mathematical structure can we use to explain these and other ex-
periments of modern physics. We need to include probability and ”interference” in
the formalism. The field of abstract linear algebra can be used to embody both of
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these properties, as we try to demonstrate.

Throughout the discussion let A and B be two quantities that can be measured
(observables). For simplicity, we start with measurements that yield values that are
discrete, quantized. We will generalize later to measurements that yield continuous
values. Label the possible values of observable A as αi and, and of observable B as
βi. The integer i can take on a finite number or an infinite number of values.

Probability of Measurements

Our experiments indicate that one can not determine the exact outcome of a
measurement before the measurement is carried out. The only information about
the outcome of a measurement are the probabilities for the various outcomes. If a
measurement of A is guaranteed to yield the result αi, then we will call this state a
”proper state” (eigenstate) of the observable A and label it as |αi >. For example in
the SG setup, if the atom is in the ”up” state, it will always be forced up after passing
though a SG setup which has it’s axis vertical. However, a system is not always in
a proper state of a measurement that is guaranteed to give a particular result. For
example, if a SG apparatus has its axis tilted at an angle θ from the vertical, and
an atom passes through in the ”vertical-up” state, then the atom will sometimes be
forced at an angle θ and sometimes in the opposite direction. In general, a system
will be in a state that has a certain ”probability distribution” to be in the various αi

states. One can represent the state |Ψ > of a system as a linear combination of the
|αi > states:

|Ψ >= a1|α1 > +a2|α2 > +... =
∑

ai|αi > (7)

What is the meaning of the ai’? One might be lead to believe that the ai represent
the probability that a measurement of A yields a result αi. However, experiments
also indicate that the probabilities are subject to interference effects. Thus, in order
to have the probabilities include interference effects we are lead to interpret the ai as
a probability amplitude: The probability for obtaining a value of αi if the observable
A is measured is |ai|2.

Similar reasoning and notation can be used with any other observable. For exam-
ple, for the observable B, we have

|Ψ >= b1|β1 > +b2|β2 > +... =
∑

bi|βi > (8)
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where |Ψ > represents the state of the system, and |bi|2 is the probability that a
measurement of B will yield the value βi. The above expansion is a result of the
probabilistic nature of the outcome of a measurement.

For example, A could be a SG setup that has its axis aligned vertically and B
could be a SG setup that has its axis aligned at an angle θ with the vertical. The state
|α+ > could be the state that goes ”up” through A and |α− > the state that goes
”down” through A. The state |β+ > could be the state that is forced in the θ direc-
tion after going through B and |β− > the state that goes ”away” from the θ direction.

Often in quantum mechanical experiments one measures the probability to obtain
a value of βi if B is measured when the system is in the state |αj >. We will label
this probability as | < βi|αj > |2. We will discuss why this method of labeling is
valuable in a moment. The quantity < βi|αj > is a probability amplitude, whose
square is a probability. In terms of experiments, this would mean that the observable
A is measured with a result |αj >. Then observable B is immediately measured. The
probability of obtaining βi when B is measured is | < βi|αj > |2.

Linear Vector Space of the States of a System

We would like to express the ideas above mathematically. Abstract linear algebra
has the elements that we need. If observable A is measured, the outcome must be
one of the αi. Thus, in general one can express the state of the system in terms of
the states |αi >. A linear combination of the proper states |αi > is consistent with
this property. If |Ψ > is any general state of the system, then we expect that |Ψ >
can be expressed as

|Ψ >=
∑

ai|αi > (9)

where the sum goes over all possible outcomes of A. The ai are related to the prob-
ability that the measurement A will yield αi. Since any linear combination of the
|αi > is a possible state of the system, the set of states is a vector space. The
field of the vector space is the type of quantity that the ai are. For the state space of
quantum systems, the ai must be complex (at least). Since any linear combination
of states is also a state of the system, the set of all states of a system form a vector
space over the field complex numbers.

For a set of objects to be an inner-product vector space, a scalar product must
be defined. We write the scalar product between the state |Ψ1 > and |Ψ2 > as
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< Ψ2|Ψ1 >. The scalar product must be an element of the field (i.e. a complex
number). What is the physical meaning of the scalar product in the state space? To
be consistent with the probability of outcomes, we want < αi|αj > to be zero if i 6= j
and equal to one if i = j. Using this property, we see from the above equation that
ai =< αi|Ψ >, so | < αi|Ψ > |2 can be interpretated as the probability to obtain αi

if the system is in the state |Ψ > and A is measured. Thus, the important interpre-
tation of the physics of the inner product is:

The inner product < Ψ2|Ψ1 > is the probability amplitude that the sys-
tem is in the state |Ψ2 > if it is in the state |Ψ1 >.

This statement is one of the key ideas that connects the physics to our abstract
linear algebra ansatz. Admitedly, the the statement is rather strange. It is like saying
that the inner product of a cat and a dog is the probability amplitude that you have
a cat if you have a dog. However, experiments show that if an atom is in the vertical
”up” state, there is a certain probability amplitude that the atom is in a ”right” state,
etc.

We have discussed the main basic ideas of quantum pure states and measurements.
We now expand on some of the properties of the vector state space.

Basis sets of the Vector Space

A basis for a vector space is a set of elements such that any state can be expressed
as a linear combination of the basis elements. Since the vector space elements are
states of a physical system, it is natural to use as a basis the states of an observable
corresponding to a measurement outcome. For example, one could use the states of
the observable A, |αi >, as a basis. This means that every state of the system can be
expressed as combinations of states for all possible values of measurement A:

|Ψ >=
∑

ai|αi > (10)

where the sum goes over all possible outcomes of A. This is a complete basis when it
comes to measurements of A, since very possible outcome is included. However, this
basis might be incomplete when it comes to all possible measurements and outcomes.
Our physical interpretation of the scalar product allows a nice interpretation of the
ai’s. The scalar product < αi|αj > is the probability amplitude that a measurement
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of A will result in a value αj when the system is in the state |αi >. The probability
must be zero unless i = j. If i = j, the probability is 1. Thus, we have:

< αi|αj >= δij (11)

In the terms of linear algebra, the basis |αi > is an orthonormal basis. If we take the
scalar product of the previous equation with |αj >, one obtains

< αj|Ψ >=
∑

ai < αj|αi >= aj (12)

Thus, aj is interpreted as the probability amplitude that the state |Ψ > will be found
in the state αj >, and |aj|2 is the probability that a measurement will yield the value
αj.

One could use the proper states of any observable as a basis. For example, one
could also use the proper states of the observable B: |βi > which correspond to values
of βi if B is measured.

|Ψ >=
∑

bi|βi > (13)

For these basis states the following is also true: < βj|βi >= δij, bj =< βj|Ψ >, with
|bj|2 being the probability that a measurement B on the system yields βj.

If one knows all the probability amplitudes < βi|αj > for all i and j, then all
measurement probabilities of the two observables A and B can be determined.

The ”energy” basis

Very important states for non-relativistic applications are the states of definate
values of the system’s energy. We label these states as |Ei >, corresponding to an
energy of the system of Ei. For bound systems, the energy is discrete (quantized). In
practice, if the energy gets large enough the particles become unbound and there is
a continuous range of possible energies. In order to use only sums, lets just consider
systems with only discrete values of allowed energy (i.e. the harmonic oscillator or
infinite square well). We will generalize to continuous spectra later. ”Proper states”
of definate energy are important, because their time evolution is simple. If the system
is in the state |Ek > at time t = t0, then for times t > t0 the state of the system is:

|Ψ >time t>t0= e−i
Ek(t−t0)

h̄ |Ek > (14)
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If the scalar products < Ei|αj > are known for all i and j, then the time evolution
of the measurement probabilities for observable A can be determined. This can be
seen as follows. Suppose at time t = 0 the system is in the state |Ψ >0 with probability
amplitudes ai for the observable A.

|Ψ >0=
∑
i

ai|αi > (15)

The states |αi > can be expressed in terms of the Ej as |αi >=
∑

j < Ej|αi > |Ej >.
Substuting into the equation above one obtains:

|Ψ >0=
∑
ij

ai < Ej|αi > |Ej > (16)

This is just a long sum with the only ”proper energy” states of the system on the right
side of the equation. The time evolution of the states of definate energy are simple:
multiply by the factor e−iEjt/h̄. Thus, the state of the system for times greater than
t = 0 is

|Ψ >t>0=
∑
ij

aie
−i

Ejt

h̄ < Ej|αi > |Ej > (17)

The probability amplitude for obtaining the value αk if A is measured is just
< αk|Ψ >t>0 or < βk|Ψ >t<0 for βk if B is measured. The same mathematics can be
used for any other observable (e.g. B). The scalar products between all the ”proper
states” of the observables (e.g. < αi|Ej >, < βi|Ej >, and < αi|βj > contains all the
”physics” of the system. In words, this means that the probability amplitudes
between all outcomes of all possible observables contains all the ”physics”.

Since the scalar product and the ”proper states” are so important we should re-
view a few of their properties.

Completeness

If every state can be expessed as a linear combination of the basis states, the basis
is said to be complete. That is, if every state |Ψ > can be expressed as

|Ψ >=
∑
all i

ai|αi > (18)

for the basis |αi >, then the basis |αi > is a complete basis and ”spans” the state
space. If < αi|αj >= δij, then the basis is ortho-normal.
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If the basis is ortho-normal, the aj can be determined by taking the inner product
with < αj| on both sides of the above equation.

< αj|Ψ > =
∑
all i

ai < αj|αi >

=
∑
all i

aiδij

< αj|Ψ > = aj

ai = < αi|Ψ >

replacing j with i.

If we substitute the expression into the equation above we have

|Ψ > =
∑
all i

ai|αi >

|Ψ > =
∑
all i

|αi > ai

|Ψ > =
∑
all i

|αi >< αi|Ψ >

|Ψ > = (
∑
all i

|αi >< αi|)Ψ >

1 =
∑
all i

|αi >< αi|

This unusual way to expess the number one is called the completeness relation, since
it embodies the completeness property of an orthonormal basis.

The completeness relation helps one understand how interference effects enter in
the ”vector space formalism”. For example, suppose the state space is three dimen-
sional, and the system starts out in the state |α1 >. Suppose that measurement B is
done, then measurement A.

The final state is the found by summing the amplitudes of the possible paths, then
squaring the sum:

|Ψfinal > =
3∑

i=1

< βi|α1 > |βi >
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= (
3∑

i=1

|βi >< βi|)|α1 >

|Ψfinal > = |α1 >

the final state is the same as the initial state, because the sum was over all the pos-
sible states of the measurement B. Physically, this means that the measurement B
did not affect the state. There was an equal chance to go through any of the states
of B. In our SG example, this is what occured when we did not observe which way
(right or left) the atom went.

Now, suppose that we block the passage of state |β1 >, and do not observe which
state |β2 > or |β3 > is the intermediate state. Then, the final state will be

|Ψfinal > =
3∑

i=2

< βi|α1 > |βi >

= < β2|α1 > |β2 > + < β3|α1 > |β3 >

Now, the probability amplitude for the final state to be |α2 > (say) is

< α2|Ψfinal >=< β2|α1 >< α2|β2 > + < β3|α1 >< α2|β3 > (19)

which, in general, is the sum of two complex numbers. The complex numbers can
have cancellations, and hence interference properties. The probability is the absolute
square of this sum.

Unitary Transformations

Since the scalar product corresponds to a probability amplitude, its magnitude
must be less than or equal to one: | < αi|βj > |2 ≤ 1. Also, between any scalar
product one can insert a sum over a complete basis: < Ψ1|Ψ2 >=

∑
i < Ψ1|αi ><

αi|Ψ2 >. If |Ψ1 > and |Ψ2 > are proper states of the B measurement, we have:

< βi|βj >=
∑
k

< βi|αk >< αk|βj > (20)

Since |βi > and |βj > are orthonormal, this gives:

∑
k

< βi|αk >< αk|βj >= δij (21)
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Thus, the matrix < αi|βj > is a unitary matrix. This requirement puts constraints
on the transition probabilities and guarantees the probabilities add up to one. The
unitary matrix < αi|βj > is the transformation matrix from the B basis to the A
basis. Unitary matrices can be associated with symmetries of the system, and play
an important role in fundamental physics.

Operators

It is not always useful to express the ”physics” in terms of the various probability
amplitudes < βj|αi >. Operators can be defined on a linear vector space, and are
important quantities. An operator ”operating” on a vector produces another vector
in the space: |Ψ2 >= Ô|Ψ1 > where Ô represents an operator, |Ψ1 > is an element
in the vector space, and so is |Ψ2 >. Some operators will not have any physical sig-
nificance, however there are many that will. In particular, it is possible to associate
an operator with each physical observable. Such an operator can be defined in the
following way:

Consider the observable A. The operator associated with A in the |αi > basis is

Aij ≡ αiδij (22)

To find the representation of the operator A in the basis of the proper states of B,
one only needs to transform via the unitary transformation < βi|αj >. In the |βi >
basis we have:

Aij =
∑
k

αk < βi|αk >< αk|βj > (23)

since δij =< βi|βj >=
∑

k < βi|αk >< αk|βj > from completeness. If we want to
write down the operator A in a basis-independent way, we put a carrot over the sym-
bol: Â.

A linear operator on a vector space is basis independent. Once one picks a basis,
say |γi >, then the matrix representation of the operator in terms of the basis
|γi > is Aij =< γi|(Â|γj >). If the operator is associated with an observable as
defined above, then the eigenvalues of the operator are the possible outcomes of the
measurement and the ”proper states” are the eigenstates corresponding to the eigen-
value. Often the ”physics” of the system is best expressed in terms of the properties
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of the operators corresponding to the systems observables.

In general terms, from the definition of the operator associated with an observable
A, we have Â|αi >= αi|αi > and < αi|Â|αj >= αiδij.

Postulates of Quantum Mechanics

Most textbooks (ours included) on quantum mechanics for undergraduate seniors
introduce the mathematical formalism of quantum mechanics with a chapter on ”The
Postulates of Quantum Mechanics”. The texts then proceed to apply these postulates
to quantum experiments to justify their validity. The postulates, which we have tried
to motivate with our discussion, are usually stated as follows:

1. The states of a system form a complete inner product vector space, which is a
Hilbert Space.

2. Observables are represented by hermitian operators on the Hilbert Space.

3. If a quantity is measured (or observed), the only possible outcomes are the eigen-
values of the hermitian operator corresponding to the observable.

4. The inner product of two (normalized) states |ψ1 > and |ψ2 >, < ψ2|ψ1 >, is the
probability amplitude that the system is in the state |ψ2 > if it is in the state |ψ1 >.

That any part of the universe would behave according to the above postulates
seems to defy ”common sense”. However, our sense of what the laws of nature should
be are formed from our limited physical senses, which are blind to the atomic and
subatomic world. As far as we know, the above postulates are the common sense of
modern physics. To understand the universe at the atomic and smaller scale, quantum
mechanical logic is required.

Continuous Spectra

We have limited the discussion to discrete spectra. The generalization to contin-
uous spectra can be done using the Dirac Delta function. As an example, we will
consider the position observable. The measurement values are continuous, which we
label as x. The eigenstate that has the value of x when position is measured will
be labeled as |x >, and the position operator as x̂. That is x̂|x >= x|x >. The
orthonormal property of the eigenstates is
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< x|x′ >= δ(x− x′) (24)

The ”completeness relation”
∑

all i |αi >< α| = 1 becomes:

∫ +∞

−∞

|x >< x| dx = 1 (25)

We note that the scalar product < x|Ψ > is the position probability amplitude
density that the particle will be found at the position x. This is the function we have
been labeling as Ψ(x). So, Ψ(x) ≡< x|Ψ >.

Another important observable that has a continuous spectra is momentum. The
operator is labeled as p̂, with eigenstates |p > for eigenvalues p: p̂|p >= p|p >. The
orthonormality property is< p|p′ >= δ(p−p′). The momentum probability amplitude
density ϕ(p) is< p|Ψ >. The completeness relationship for the momentum eigenstates
is similar to that of the position eigenstates:

∫ +∞

−∞

|p >< p| dp = 1 (26)

Some important scalar products

Since position and momentum are often measured, the scalar product between the
state of a system |ψ > and an eigenstate of definate position x, |x >, and definate
momentum p, |p > is an important quantity. The quantity < x|ψ > is a function
which represents the probability amplitude to ”find” the particle at the position x if
the position is measured. Since x is a continuous variable, < x|ψ > is a probability
amplitude density. It is often given the symbol ψ(x):

ψ(x) ≡< x|ψ > (27)

and is the function that is the solution to the Schroedinger equation in coordinate
space.

The quantity < p|ψ > is a function of p which represents the probability amplitude
density to obtain a value of p if the momentum of a particle is measured when in the
state |ψ >. It is often given the symbol φ(p):

φ(p) ≡< p|ψ > (28)

Some important unitary transformations and scalar products
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A very important unitary transformation (inner product) is between the position
and momentum eigenstates: < x|p >. Interference experiments indicate that <
x|p >∝ eipx/h̄. Using Dirac normalization, we have:

< x|p >= eipx/h̄√
2πh̄

(29)

From this inner product, one can transform from the position probability ampli-
tude density function, < x|Ψ >, to the momentum probability amplitude density
function, < p|Ψ >:

< p|Ψ >=
∫ +∞

−∞

< p|x >< x|Ψ > dx (30)

giving

ϕ(p) =
∫ +∞

−∞

Ψ(x)
e−ipx/h̄

√
2πh̄

dx (31)

Using the inner product < x|p >, one can also determine the form of the momen-
tum operator in coordinate space as follows:

< x|p̂|ψ > =
∫
< x|p >< p|p̂|ψ > dp (32)

=
∫ eipx/h̄√

2πh̄
p < p|ψ > dp (33)

= −ih̄ d
dx

∫ eipx/h̄√
2πh̄

< p|ψ > dp (34)

which reduces to

< x|p̂|ψ >= −ih̄ d
dx

∫
< x|p >< p|ψ > dp (35)

or

< x|p̂|ψ >= −ih̄ d
dx

< x|ψ > (36)

For the position operator in coordinate space we have:

< x|x̂|ψ >= x < x|ψ > (37)

16



From the above equations, one can derive the commutator: [x̂, p̂]. First< x|x̂p̂|ψ >:

< x|x̂p̂|ψ > = x < x|p̂|ψ > (38)

= x(−ih̄ d
dx

) < x|ψ > (39)

Next < x|p̂x̂|ψ >:

< x|p̂x̂|ψ > =
∫
< x|p >< p|p̂x̂|ψ > dp (40)

=
∫
< x|p > p < p|x̂|ψ > dp (41)

=
∫ eipx/h̄√

2πh̄
p < p|x̂|ψ > dp (42)

= −ih̄ d
dx

∫
< x|p >< p|x̂|ψ > dp (43)

= −ih̄ d
dx

(< x|x̂|ψ >) (44)

Operating with x̂ on the left gives:

< x|p̂x̂|ψ >= −ih̄ d
dx

(x < x|ψ >) (45)

Using the product rule for the derivative gives:

< x|p̂x̂|ψ >= −ih̄ < x|ψ > +x(−ih̄ d
dx

) < x|ψ > (46)

Subtracting p̂x̂ from x̂p̂ gives:

< x|x̂p̂− p̂x̂|ψ >= ih̄ < x|ψ > (47)

Since this expression is true for all states |ψ >,

x̂p̂− p̂x̂ = ih̄ (48)

This important operator equation derives from < x|p >= eipx/h̄

2πh̄
.

Double Slit Experiment Revisited
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In our previous discussion of the double slit experiment, the pattern on the wall
was understood as interference between the amplitude for the electron to pass through
one slit plus the amplitude to pass through the other. How can the ”interference”
pattern on the wall be understood with the linear algebra formalism?

As follows: The slits on the screen correspond to the ”x” probability distribution

of the electron just after it passes through the screen. The pattern on the wall is pro-

portional to the x-component of the electron’s momentum after it passes through the

screen.

That is, the state of the electron in the position basis, < x|Ψ >= ψ(x), has
equal amplitudes at the location of the slits, say x = 0 and x = d. Or, ψ(x) ∝
(δ(x) + δ(x− d)). After the electron passes through the slits, the more momentum it
has in the x-direction then the further away it lands on the wall. So the probability
for the electron to land at a particular distance from the center is proportional to the
momentum distribution of the electron, | < px|Ψ > |2 = |φ(px)|2.

As discussed, the inner product < x|p > contains all the information for trans-
forming from the position basis to the momentum basis.

< px|Ψ > =
∫ +∞

−∞

< p|x >< x|Ψ > dx

φ(px) ∝
∫ +∞

−∞

eipxx/h̄ψ(x)dx

∝
∫ +∞

−∞

eipxx/h̄(δ(x) + δ(x− d))dx

∝ 1 + eipxd/h̄

∝ eipxd/(2h̄)(e−ipxd/(2h̄) + eipxd/(2h̄))

∝ eipxd/(2h̄)cos(pxd/(2h̄))

Taking the absolute square, one obtains the probability distribution for the electrons
momentum in the x-direction, the direction in which the slits are separated.

|φ(px)|2 ∝ cos2(pxd/(2h̄)) (49)

Thus, the probability distribution on the wall after the electron has passed through
two very narrow slits will be a cosine squared function as observed experimentally.
This equation is the same as we derived earlier using the interference of amplitudes
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from each slit, as follows. The sin of the scattering angle θ equals px/py for small
angles. Here, py is the electrons momentum in a direction towards the slits and the
wall. So the difference in distance ∆d as defined before equals ∆d ≈ d sin(θ) ≈
dpx/py. Thus, dpx ≈ ∆dpy. With this substitution we have

|ψ(px)|2 ∝ cos2(∆dpy/(2h̄))

∝ cos2(
π∆dpy
h

)

∝ cos2(
π∆d

λ
)

since the DeBroglie wavelength λ equals h/p. This is the same result that we obtained
before using ”interference”.
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