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Home run data from Major League Baseball’s Statcast can be described by adding a lift
force to the equations of projectile motion commonly used in undergraduate computational
physics courses. We discuss how the Statcast data can be implemented in the classroom.
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I. INTRODUCTION

Projectile motion in sports is an interesting, realistic
example that can bring enthusiasm to a physics classroom. In
particular, the flight of a baseball has drawn the attention of
many physics educators and scientists as evidenced by the
numerous articles in this and other journals (see Refs. 1-8 to
mention a few). Recently, Major League Baseball added a
“Statcast” feature to their website that lists data on the flight
of home runs, as well as other situations. We point out here
how one can use this home run data in a computational phys-
ics course.

The data we examine are from Ref. 9, which are the lon-
gest 50 home runs from the 2015 postseason. The site lists
the data in a convenient format that can be copied and pasted
into a text file with four columns to be read and analyzed by
a computer code. The data consist of the initial speed v, the
launch angle 0, the maximum height /., and the range R
of the home run. The data span a fair spread of values
with  395ft < R < 459ft, 100.1 mph < vy < 112.5mph, 17.9°
< 0p<35.9°, and 51.6ft <hpy,x < 136.0ft. The v, 0y, and
hmax data are actually measured, and are given to the tenth’s
place in their respective units. The range R data are given to
the nearest foot and represent the projected distance since
the ball usually lands in the stands.'’

II. MODELING THE TRAJECTORY

The home run data can be modeled using ideas from Refs.
1-8. The force that the air exerts on a flying baseball can be
separated into a component opposite to the direction of the
velocity ¥, and one perpendicular to the velocity. The com-
ponent opposite to ¥ is referred to as drag. It is common to
include this air frictional drag force in numerical exercises,
and to take its magnitude proportional to the speed squared
(t?). The component of force perpendicular to ¥ is due to the
Bernouli effect and is referred to as the Magnus force; its
direction is perpendicular to ¥ and @, where @ is the angular
velocity vector of the ball. For a classroom treatment, we use
the most basic equations that best describe the motion. Since
we are trying to determine two data points, R and hy,,,, we
should have at most two free parameters in our equations.
For these considerations, we use the following ansatz:
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where a, and a, are the acceleration components, and v, and
vy the components of the velocity in the x and y directions.
(The y direction is vertical and the x direction is horizontal,
pointing in the direction the ball is traveling.) The accelera-
tion g due to gravity enters only in the equation for a,. The
parameters vy and /7 take into account air friction and the
Magnus force as follows.

The force of air resistance, or drag, is |Fy| = Fy
= %CDpsz, where p is the density of air, A is the cross sec-
tion of the baseball, and Cp is the drag coefficient. The drag
force is in the —7 direction and can be expressed in terms of
the terminal speed v7. At the speed vr, the drag force equals
the object’s weight: mg = (1/2)CppAv}. The resulting
expression for the magnitude of the drag force is Fy
= mgv?/ v%; the force itself is therefore

mguv

Fg=— ? (vxi“+ v,f). 3)

The magnitude of the Magnus force is |F | = Fy
= (1/2)CLpAv?, where C, is the lift coefficient. The con-
stant Cz depends directly on the spin factor S = rw/v, where
r is the radius of the ball. Consequently, to a good approxi-
mation F,, is proportional to wv. The vector Fy can be
decomposed into a component that is horizontal, FH, and
one that lies in the vertical plane, F). The component Fy can
make the baseball curve left or right, while F can cause the
ball to rise or sink. It is the F; component that will affect
hmax and R the most, and we only include this component in
the equations of motion. We also assume that ¢ is constant,
or equal to its average value, throughout the flight. With
these assumptions, the lifting component of the Magnus
force will be proportional to v and can be included using
only a single parameter, which we will call /7. It is conve-
nient to use the terminal speed in the parameterization by
writing |I?,| = Iymgu/vr. As such, the parameter /7 is the
ratio of F; to the ball’s weight when the ball is traveling at
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Table I. Results using typical values for the home runs we analyzed. In each
case, vo= 105 mph and 0,=28°. To assist readers in checking their code,
the Euler method was used with a time step of 0.01 s and the range R is the
value of x when y becomes negative.

vy (mph) Iy R (ft) o ()
78 0.5 396 87

83 0.5 418 89

78 0.7 417 102

vr. The vector F lies in the xy-plane and will be perpendicu-
lar to ¥; it can therefore be written

F - ’%’T (~uyi + v4)- %)

The acceleration ayg caused by F/ is the last term in Egs. (1)
and (2). One can check that |Ggre| = gv?/v%, |@un| = I8
when v=vr, and that &y - =0 in these equations, as
expected.

III. NUMERICAL METHODS AND RESULTS

Equations (1) and (2) can be solved numerically using
finite difference methods, and without the ay;; terms are clas-
sic examples. We solved these equations using the Euler
method with a time step of (.01 s. The initial position of the
ball was taken to be xo = 0 and y, = 1 m, assuming the batter
hits the ball on average when it is around a meter above
home plate. The initial velocity in the x-direction is vy
= vgcos flp and in the y-direction vy = vgsinfly. We deter-
mined the range R as the value of x when y becomes nega-
tive. For more accuracy, one can interpolate linearly
between the positive and negative values of y to find where
y=0. The range could differ be as much as one foot, since
the distance covered in 0.0ls by an object traveling at
100 mph is around 0.4 m. Typical values for the parameters
of the home runs we analyzed are listed in Table 1.

There are two parameters that determine the fate of the
ball: vr and /7. One can match the range R using only vy and
setting /7= (. However, for every home run, the predicted
hpax 18 well below the data. In fact, for 47 of the 50 home
runs and all home runs where 0y< 31.5°, the maximum
height is larger than va/Zg, the value obtained neglecting

the effect of the air. The trajectory of these 50 home runs
cannot be accounted for without some lift. So, one has two
parameters, vy and /., to fit two data points, A, and R. The
students can determine vy and I for each home run and
examine if the values are consistent and reasonable. For
some home runs, Statcast lists an estimated hang time. For
these cases, the students can check their predictions,
although the data are only approximate.

Values for vy and /5 that “best fit” each home run can be
carried out by varying the parameters in expected ranges to
minimize a x~ function. Using nested loops, we varied vr
from 70-100 mph in increments of 1 mph, and varied /7 from
0.2-1.0 in increments of 0.01. Our )(2 function was
2 = (Reac — Rdm)2 + (hmax cale — hmmm)z. The grid sizes
of *=1mph for vy and *0.01 for /r were small enough to
match, within one foot, the range and maximum height data.
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One could search a smaller grid for better predictions, how-
ever, the model is too crude to justify more accuracy.

The values we obtained for the longest 50 home runs for
the 2015 postseason were as follows. The terminal speeds vy
were all in the interval 75 mph < vy < 88 mph, with an aver-
age of 81.5mph and a standard deviation of ¢ = 3.3 mph.
The terminal speed will depend upon air density and vary
from park to park, though we note that none of the home
runs in the 2015 post season were hit at high elevation. The
relation mg = (1/2)CppAv3 can be used to obtain Cp, from
the terminal speed. A value of vy= 81.5mph yields a value
for Cp of 0.41. The values for /; were all in the interval
0.42 <1< 0.71, with an average of 0.56 and a standard
deviation of ¢ = 0.08. Since C; = 2[ng/psz = I7Cp, the
data have an average value for C, of approximately 0.23.
This value for C;, results in a spin factor"* of around 0.25 or
a rotation rate of ~2400rpm at vy. Thus, both Cp and C; are
“in the ball park” of accepted values.""

The results can lead to interesting classroom discussions.
How accurate are the equations? How much could @ change
during the flight? What considerations were not included?
How much might wind affect the range? What variation
could vy have at sea level? What is vy for home runs hit in
Denver? What rotation rates would give values of /- between
0.4 and 0.7, and how reasonable are these rates? The students
can speculate about how far the home run ball would travel
without the Magnus force, and so on. Answers to some of
these questions can be found in the references. Every year
there will be new home runs for the next class to analyze,
and perhaps Statcast will include accurate estimates of hang
time. We hope the Statcast home run data are a hit with the
students, and lift their interest in the Bemoulli effect in base-
ball as well as other sports.
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