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Putting your heart into physics
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We describe techniques for measuring the time interval between successive heartbeats. This time
series data can be used in undergraduate physics classes for instruction in resonance phenomena,
scaling, and other methods of analysis including Fourier analysis and PoplotreUsing methods

from physics on data from human physiology are of particular interest to life science students.

© 2004 American Association of Physics Teachers.

[DOI: 10.1119/1.16155687

[. INTRODUCTION heart. The voltage as a function of time takes on the form

own in Fig. 1. A voltage pulse is produced whenever a

. ..sh
Over the past 30 years, research on heart rate variabilitfo,rtheat occurs. The large spike is calledRheeak and is

has studied which properties of heart rate control are impory good reference point to define the time of the heartbeat.

tant in assessing the health and fitness of the cardiovasculgf,a time from oneR peak to the nexR peak, an interspike

system in human$The main measurement is the time be-interval, is a good measure of the time between successive
tween successive heartbeats. Measurements are taken oyer "> °1ic rofarred as RRinterval We are inter-

time periods as short as a few minutes to as long as 24 hourg ted in theRRinterval times for many successive heart-

and the resulting data are a series of times usually Measurgd s, Measuring these times to an accuracy of one millisec-

to an accuracy of milliseconds. A number of articles haVeond is sufficient for all applications in which the subject is at

been published in physics journals which apply method . X )
from nonlinear systems theory to the time series of the heasrrteSt' TheRRinterval times can be measured from an electro

rate time interval dat&:® In this article we describe a num- cardiogram or by using a heart monitor chest strap. We de-
ber of experiments on heart rate variability which would scribe both methods below.

make good student projects and laboratory exercises for the An electrocardiogram can be obtained by amplifying the_
undergraduate physics curriculum voltage from electrodes placed across the heart. The ampli-

Analyzing data from human physiology is of particular fied signal can be used as input into an analog-to-digital card

interest to life science studerftsyho are required to take ©f Sound board” From the digitized signal, the time differ-
physics as part of their degree requirement. Although ngNce between successivgeaks can be measured. Sampling
laws of physics are being investigated by the experiment tes greater than 1000 Hz will result in an accuracy of at

described here, the phenomena and analysis methods gast one millisecond. If the signal is sampled less than 1000
common to both the physical and biological sciences. Thd1Z, parabolic interpolation can be use to determine the time

analysis of a driven damped pendulum can be compared fof the R peak between sampled data points. A disadvantage
the response of the human heart when driven by controlle@f this method is that much memory is used to store the ECG
breathing. The concepts of frequency, amplitude, phase shifignal. If only theRRtimes are of interest, one could set a
and resonance enter in both applications. The time intervdfigger in the software to measure the time betweenRhe
data can be used to teach average values and standard de\Rg2aks. _ _ _
tions, which in this case have relevance to health and fitness. A heart rate monitor belt is probably the easiest way to
For more advanced students, the time interval data can p@easureRRinterval times. The belt is worn around the chest
used to introduce spectral analysis, Poingalies, and the and sends an electromagnetic signal every tim& peak is
scaling properties of heart rate control. For physics majorsdetected. The heart rate monitdelt plus receiver watohis
building the hardware for data collection and writing the used to measure one’s heart rate while exercising, and is
software for data analysis make good special projects or ugsommon gear for runners of all levels. A watch detects the
per division laboratory activities. signal and measures the heart rate. There are watches avail-
An advantage of time interval data is that accurate datable which measure theRtimes directly** The RRinterval
can be obtained quickly. With the advent of the heart ratdimes are downloaded from the watch to a computer for data
monitor for recreational athletes, research quality time interanalysis.
val data can be measured easily and with minimal expense. The RRinterval times also can be obtained from the moni-
We start by describing techniques for measuring the heartor belt by winding a coil of wire around the belt as shown in
beat interval time. We then discuss some experiments thatig. 2. The pick-up coil in Fig. 2 has 80 turns of wire. For the
can be used in a physics laboratory class or as a physiggrticular monitor we usetf, the transmission signal is a 5

project. kHz pulse which lasts for 7 milliseconds. The 80 turns of
wire produced a peak-to-peak voltage of 0.8 volts. R
Il. DATA COLLECTION interval times are obtained by measuring the time between

the start of one 5 kHz signal and the next 5 kHz signal. The
An electrocardiogram is a measurement of the voltage bemeasurement is most easily done by using a voltage com-
tween two particular points on the chest which bracket theparator chip. The signal from the pick-up coil is used as input
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around 60 data points per minute. The data form a series of
times, which can be used to introduce students to a variety of
analysis methods.

Some basic knowledge of heart rate control helps in the
interpretation of the data and experimental design. At rest,
either lying or standing, the autonomic nervous system regu-
lates the heart rate. The autonomic nervous system has two
different control influences known as sympathetic and para-
sympathetic. Sympathetic nerve activity increases, while
parasympathetic nerve activity decreases heart rate. The re-
lation between the resting heart rd&dethe parasympathetic
factorn, the sympathetic factan, and the basic heart rai
is modeled &

Fig. 1. An electrocardiogram signal, which is a plot of the voltage across the
heart as function of time. The large positive peak is referred to aR feak.
The time between heartbeats is measured as the time beRyaeaiks (i),
and is referred to as theRinterval.

B=Bymn=By(1+S)(1—P). (1)

We have writterm=(1+S) andn=(1—P), whereSrefers

to the sympathetic activity and to the parasympathetic ac-
tivity. If both sympathetic and parasympathetic control is
: . . blocked, the basic rat®, for most people is between 70 and
to the comparator chip. Usya 5 volt bias, the output of the 11 peats/min. In the lying position, the sympathetic activity

comparator serves as a digital input to a TTL port. We hav < - S
used two different devices to measure the time between sief§ usually small (6=S<0.1), the parasympathetic activity is

nals which can be used as digital input to a micro-controlle arge_(0.1< P<O.'6) g and the heart ré@ IS as !OW as it can
(HC1D) or as input via the parallel port in a personal Com_be without medication. In the standing position, the sympa-

puter (laptop. The use of the timer in the HC11 or personal f[hetic activity Sis increased, the parasympathetic actiity

computer is described in the Appendix. Of the two methods'S reduced, and the heart rate increases. The particular bal-
the micro-controller has the advantage that it is dedicateognge (t)f 3ympath¢t|c and pa(azymdpatretlc a’:\célwty '(;‘ lying
small, and portable. Interfacing with a computer has the ad2" ?_tan |nghva|rtlﬁs amofng in (;V' tlﬁa sf ar; epends upon
vantage that it is very inexpensive, and thus one can buil&‘g%] Itness, hea ,fgetne 'Ctshap f? terthac ors. bility of th
enough setups for an entire laboratory class with little cost eéré are many factors that afiect the variabiiity of the

We have compared the accuracy of measuring with thng\’-lntervaIs. Two important influences take place on two

pickup loop to the heart rate monitor watch and have opdifferent time scales: variations with periods less than around

tained identical results for both systems. We further teste§ S€CONds, and periods longer than 10 seconds.

the accuracy of measuring the same heartbeats with two difg)
ferent chest straps on one subject. The measured times
agreed within 0.15%, with the errors being random. Thus, we
estimate the accuracy of tiRRinterval measurement to be
around 0.15% using heart rate monitor straps. The manufac-
turer claims an accuracy of 1 ms. BecalRR times are
usually around 1000 ms, this claim implies a percent uncer-
tainty of 0.1%. An uncertainty of 1 ms is the accuracy used

by researchers in physiology and sports medicine. Thus, thg)

methods described here also offer the possibility for interdis-
ciplinary projects with biology and kinesiology. As computer
chip technology advances, the measuremenR&interval
times will likely become easier and less expensive.

[Il. DATA ANALYSIS AND APPLICATIONS

Data can be collected while the subject is at rest or exer-
cising. For a physics classroom experiment taking data at
rest is more practical. Such data are produced at a rate of

Short time scale changes, from one beat to the next, are
caused primarily by changes in breathing. The dynam-
ics are relatively simple. When one inhales, the heart
rate B increases; conversely, the rate decreases when
one exhales. The heart rate is thus driven at the breath-
ing frequency. For breathing frequencies greater than
10 breaths/min, the “driving force” is related to the
parasympathetic activitip.

Changes longer than 1 or 2 breathing cycles are caused
by many factors, and the dynamics can be complicated.
The average heart rate wanders, and sometimes slow
oscillations are produced. Oscillations with a period of
around 15 to 25 s often occur. It is believed that these
oscillations are related to variations in blood pressure,
although the exact mechanisms are not completely
understood. The effect is strongest in the standing po-
sition and seems to depend on both the sympathetic and
parasympathetic activity. We will refer to these oscilla-
tions as low frequency oscillations. In the literature,
they are often called Mayer wavés.

The dynamics of both time regimes are of interest to stu-
dents. By controlling the rate and amplitude of breathing, the
response of a driven system can be investigated. Students
can measure the resulting amplitude and phase of the heart
rate variations for different breathing frequencies. For the
longer time variations, students can see the usefulness of a
Poincareplot to separate breathing from the long-term dy-
Fig. 2. Coil of wire that is placed around the heart rate monitor to pick up”am'PS- We der_non_Strate features O_f th_e tW_O time Scales_ and
the transmitted signal. With 80 turns of wire, the resulting signal has athe differences in lying versus standing in Fig. 3. The subject
peak-to-peak voltage of 0.8 V. changes posture from lying to standing. In the lying part of
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Lying to Standing RSA (one breath every 8 heartbeats)
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Fig. 3. Plot of theRRinterval versus beat number as a subject changes eat Rumber

posture from lying to standing. For beat numbers 1000-1050 the subject igijg. 4. Plot of theRRinterval versus beat number for a subject breathing

lying, and for beat numbers 1100 to 1200 the subject is standing. eight heartbeats for every breath. The first five breaths are shallow breathing
(beat numbers 40—80and the next five breaths are deep breattimept
numbers 80—-120

Fig. 3, the short-term variations in the heart rate caused by

breathing due to the strong parasympathetic activity ar
clearly seen. In the standing part of Fig. 3, the short—term?/' RESPONSE OF A DRIVEN SYSTEM
oscillations due to breathing are essentially gone, but low The damped driven pendulum and RLC circuit are sys-
frequency oscillations with a period of around 10 heartbeatge g that often are studied in undergraduate physics labora-
are present. We note that heart rate control is a subject Qgyies to examine the response of a driven system. Although
current research, and the interpretation of the data majeart rate control is more complicated than these two physi-
change as further experiments are don_e. Interested studenis systems, many of the terms and basic properties are simi-
should consult Sources on human physiology for a more d&yr The heart at rest has a steady state heart rate, a low
tailed treatment: _ , frequency natural oscillatiofMayer wavey and can be

In the laboratory experiments described below, studentgyiyen by a periodic mechanisifbreathing. Students can
collect data through the parallel port of a personal computeferform similar experiments on the heart as they have on the
as explained in the Appendix. THeRtimes in milliseconds  pengulum and RLC circuit by driving the heart with different
are displayed on the screen in real time. There is a switChyeathing frequencies and driving forces and measuring the
option in the software which causes a beep for every heartasponse. Periodic breathing results in a periodic heart rate
beat. This option allows the students to synchronize breathyagponse after transients have settled out. If one breathes in
ing and heart rate. After all thRRtimes are recorded, StU- anqd oyt smoothly, thRinterval times oscillate in a smooth
dents can view the data or save the data as text to import fhanner with a near sinusoidal shape. This phenomenon is
into a spreadsheet program. Software has been written {Q|jeq respiratory sinus arrhythmi®SA), and the oscilla-

assist the students in their data analysis. tions are quantified by the respiratory sinus arrhythmia am-
plitude.
The RSA amplitude is roughly proportional to the volume
IV. SIMPLE STATISTICAL CALCULATIONS of air inhaled, the tidal volume: If the tidal volume is not

measured, the students can qualitatively verify that the RSA

The RRinterval data are well suited for instructing stu- amplitude increases with increased tidal volume. In Fig. 4 we
dents in simple statistical calculations that come with spreadshow data taken while the subject was standing and breath-
sheet programs and data analysis software, for example, airg at 8 beats/breath. The first five breaths are shallow
erages and standard deviations. To save time, we havweathing, and the next five are deeper breathing. It is clear
included programs in the data acquisition software to perthat a larger RSA amplitude is a result of deeper breathing, or
form averages, standard deviations, discrete Fourier transkiving force.
form, and fast Fourier transform{(&FT). The students view The frequency response of the heart rate can be examined
the data graphically to determine the range of beat numbersy having the subject breathe at different frequencies and
that are appropriate for the calculations. The data were orheasurin% the resulting RSA amplitudes and relative
particular interest to biology students who participated inphases/'® The heart at rest behaves quite differently in the
data analysis workshops in which averages, standard devidfing compared to the standing positibt? It is most inter-
tion, Fourier analysis, and analysis of varian@NOVA)  esting to perform the experiment in the standing position,
were taught using thRRinterval data. where the RSA amplitude has a much stronger frequency

Data for statistical calculations are best taken in the lyingdependence. The subject should try to breath comfortably at
or reclined position. In the lying position the heart rate doessach frequency. Because the RSA amplitude depends on the
not wander as much as while standing. The data vary abouttédal volume, we should normalize the RSA amplitude for
fairly constant average value, with the beat-to-beat variatiothe tidal volume at each frequency. We find that the average
due primarily to breathing. The coefficient of variation adult has a tidal volume of about 1000 ml at slow breathing
(COV) is defined as the ratio of the standard deviation di-rates(4 breaths/mihand a tidal volume of around 500 ml at
vided by the average. Values of the COV usually are betweef4 breaths/min. We could use these values and linearly inter-
2% and 10%. In general, the COV decreases with age, andlate to find the intermediate breathing frequencies. How-
large COV often is associated with fitness and overall googkver such accuracy is not necessary for an introductory phys-
health!® ics experiment. Because the increase in amplitude at the
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RSA Amplitude (Standing) Response to Step Breathing
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Fig. 6. Heart rate response to step function breathing. The subject inhales
quickly, holds his breath for 10 heartbeats, exhales quickly, and holds his
breath for 10 heartbeats.

RSA phase

180 .
150 4

120 another phase angle between the blood pressure and RSA
90 - oscillations, which might be more relevant for low frequency
resonance. Although the amplitude rises quickly from high to
low breathing frequencies, it does not drop as quickly at low
frequencies. Some physiologists think a resonance phenom-
0 ‘ ' A ena is occurring/ while others believe that the amplitude
b ) increase is partly caused by the increased response time
(b) Breaths/min when breathing slowl§??
Fig. 5. The frequency response of the heart rate as a function of the breath- YW @lso can measure the response of the heart to a step
ing rate for a subject in the standing positida) the respiratory sinus the input; that is, have the subject breath in such a manner that
arrhythmia amplitude antb) the phase angle with respect to the breathing the tidal volume is a step function of timéThis is accom-
frequency. plished by breathing in quickly, holding one’s breath for a
certain number of heartbeats, breathing out quickly and then
holding one’s breath for the same number of heartbeats. We
lower frequencies is significantly more than a factor §6@e  plot in Fig. 6 the response for a standing subject and breath
Fig. 5a)], it is not due to only increased tidal volume. holding for 10 heartbeats. It is interesting to observe that the
The RSA amplitude is measured by displaying RB  steady state response is periodic, and that breathing in has
interval data graphically on the computer display. For breaththe biggest beat-to-beat effect.
ing frequencies slower than 10 breaths/min, the oscillations For more advanced students, the step-function input dem-
are clearly visible. The students simply subtract the shortesinstrates that the response can be nonlinear. In Fig. 6 it can
RRinterval time from the longesRRtime in each cycle and be seen that the response to a quick inhale is not equal to the
divide by 2. An average over a few cycles gives a fairly negative of the response of a quick exhale. The nonlinearity
accurate RSA amplitude. For breathing frequencies greatealso can be demonstrated by comparing the Fourier spectrum
than 10 breaths/min, the oscillations are sometimes small inf the input and output. A step function only has odd spectral
the standing position, but usually a rough RSA amplitude cartomponents and is shown in Figay. The response function
be obtained. Another option is to perform a discrete Fourieshown in Fig. Tb) has a large amplitude at twice the input
transform and use the amplitude of the peak at the breathinfjequency, a frequency not present initially. In both Figs) 7
frequency for the RSA amplitude. and 7b), a discrete Fourier transform was performed over
The phase angle between the breathing and heart rate céive breathing periods. If one breathes smoothly, however,
be estimated by noting the beat number at maximum lunghe response is fairly linear. An example is given in Sec. VII.
volume (or any other point in the breathing cytldhe stu-
dents can obtain the phase angle from the location of thesg; poINCARE PLOTS
beat numbers within the RSA cycle. In Fig. 5 we plot the
phase angle and amplitude for a standing subject. We have A Poincareplot is a plot in which one or more variables
taken positive phase to mean that breathing oscillations leaare projected out of the dynamics. We can project out a pe-
RSA oscillations. riodic variable by plotting the other variables every time the
The frequency response resembles that of a damped drivdarmer variable obtains a particular value. The classic ex-
oscillator, with characteristics of a resonance phenoména.ample is the damped pendulum driven sinusoidally. The
In Fig. 5 the amplitude has a maximum and the phase passesgle of the pendulumg, angular velocityw, and the phase
though 90 degrees at a breathing rate of around five breathef the driving force are used to describe the motion. A phase
min or a frequency of around 0.08 cycles/s. If the studentspace plot off versusw for a particular phase of the driving
have time to observe low frequency oscillatiofidayer force produces a Poincamot which demonstrates the pe-
waves, the frequency of this natural oscillation also will be riod doubling route to chaos and strange attractors.
close to 0.08 cycles/s. Although the data suggest a resonanceFor theRRinterval data, a similar approach can be used to
phenomena is occurring, further investigation is necessarproject out much of the effect that breathing has on the sys-
for a definitive interpretation. The phase angle being meatem. To accomplish this, the subject needs to breathe syn-
sured is between breathing and RSA oscillations. There ishronously with the heart rate. The subject takes a complete

60 |
30 4

Relative Phase (Deg)

o
N
IS
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Fourier Spectrum of Square Wave (5 periods) Fourier Spectrum (Lying)
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Fig. 7. Fourier spectrum of heart rate for step function breathiagthe 0 0.05 041 015 02 025 03 035 04
spectrum of the breathin@tep function and (b) the spectrum of the heart (b) Frequency (Hz)

rate response.
Fig. 9. Fourier spectrum of tHeRinterval times for(a) a subject lying and
(b) standing. The subject is breathing at 12 breaths/min in both cases. LF

and HF refer to the low and high frequency bands used by exercise scien-
breath everyn heartbeats, and should take each breath th@c.c The FET is calculated usi?]g 252 dataypoims_ Y

same way. We then measure one or more variables for every

nth heartbeat. One variable to consider is evath RR

interval time. These times are at the same phase of the driv-

ing force (breathing. In Fig. 8 we show a plot fon=4 for  VIl. SPECTRAL ANALYSIS

a standing subject. In the figure, oscillations occurring every

three points can be seen, particularly foleat numbenss Spectral analysis is a common tool in physics and can be
between 130 and 150. These low frequency oscillations, wit@pPplied toRRinterval data. In practice it is used to separate
a period of 12 heartbeats, are presumed to be due to vari@ut the high frequency beat-to-beat variations due to breath-
tions in the blood pressuréMayer waves To produce a ing from the low frequency variations due to interactions
two-dimensional plot, we can plot the blood pressure versudith the rest of the bod§/ The RRinterval times serve as an
the RRinterval time at evenynth heartbeat. Although these interesting data set for instruction in Fourier transform tech-
are not phase-space variables, a plot of system parametdt§l!€s. o

that depend on each other at a constant phase of an externall0 observe the low frequency oscillations, it is best to take

driving force is analogous to a Poinca®t for mechanical data with the subject in the standing position breathing at a
systems. fixed rate faster than 10 breaths/min so that the higher fre-

quency peak due to breathing does not lie in the low fre-
quency rangé® A common practice in exercise science is to
plot the power density spectrum of the heart rate variability.
The power spectral density is proportional to the absolute
square of the FFT amplitude. We plot the spectrum in Figs.
9(a) (lying) and 9b) (standing for which the subject is
12000 - breathing with a frequency of 12 breaths/min, or 0.2 Hz.
Note the narrow peak at 0.2 Hz in both spectra. The broad
11000 - low frequency peak centered at 0.07 Hz is significantly larger
in the standing position.
10000 1 The power density spectrum plotted in Figéa)%and 9b)
is calculated using a simple FFT with 256 points. The low
9000 ' ‘ ' ' frequency peak is not always clean and narrow, and it is
120 130 140 150 160 170 believed that the amplitude of this peak is related to sympa-
(Beat Number)/4 thetic activity’® Because the low frequency peak often is
Fig. 8. Plot of theRRinterval for a subject breathing one breath every four difficult to Observe’ different methods mvolvmg f”te”ng and .
heartbeats while standing. TRRinterval is plotted for every fourth heart- autoregression have been developed to assist the analysis.
beat. Although we usually limit our analysis to an FFT of the raw

Constant Phase Plot (n=4)

13000

RR Interval (0.1 msec)
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Fig. 11. A discrete Fourier transform of tiRRinterval times for a subject
lying and breathing normally. 4000 data points were used in the transform.

lected in a little more than 1 hour. Data collection can be

s done before clas§for example, during a lectureand ana-
6:06 B 46 62 lyzed later.
(b) Breathing Frequency (cycles/beat) The general approach is to extract a parametérom N

Fig. 10. () Fourier spectrum of breathingb) RRinterval for a subject Neartbeats thatis a measure of variability. One then examines
breathing a deep breath lasting 16 heartbeats followed by two shalloweil€ properties of this parameter for larje In particular, a

breaths of eight heartbeats each. power law relationship often exists:

VaN?A, 2
data, these advanced time series analysis methods might R§s peyond the scope of this article to discuss all the meth-
of interest to physics or engineering students. ods in-current use, and the interested reader is directed to the

An interesting application of spectral analysis is the outputesearch articlet:® Here we discuss two simple applica-
from breathing with a particular spectral profile. A simple tions. which can be used with 1 hour worth of data.
breathing pattern for which the oxygen intake is constant is |t has been observ&that heart rate variability data ex-
to breathe one slow deep breath followed by two breaths thalinit 1/f noise scaling. The students can demonstrate this

are twice as fast and half as deep. In Fig. 10, we show dalg ,jing by taking a Fourier transform of tRRinterval data.

for a subject breathing the following repeating pattern: firslg, o, 3 transform is best accomplished from a stationary time
one deep breath lasting 16 heartbeats, then two breaths, e ies. We first take the difference of successRinterval

lasting eight heartbeats each with half the depth as the fir%}[re& 8/=t;.1—t;, and then Fourier transform . In Fig.

deep breath. The spectrum corresponding to a smusmdi we plot the discrete Fourier transformd&ffor 4000 heart

function of amplitudeA, period T, followed by two sinu- beats while a subiect was sitting. Fiqure 11 is a lod—lod olot
soidal functions each of amplitud®’2, periodT/2, is shown ats whi subject was Sitting. Figur IS 9-1og p
of the average Fourier amplitude versus the pefiedl/f.

in Fig. 10@). The spectrum of th&Rinterval time series for The | ; b ion is th | lation b
a subject breathing in this way is shown in Fig.()0 In e interesting observation is the power law relation be-
both Figs. 108) and 1@b), a discrete Fourier transform was WeeN the amplitude and peridérequency. It is believed
performed over five cycles. For each peak in the breathin at data from healthy hearts have a power law relation be_—
spectrum, there is a corresponding peak in the heart ra keen tne lf?‘mp".t“def ahndlthe lfrequlencyf/. When E“%e data is
spectrum. The relative response amplitudes correspond p?e r(ia:dst a?sllnoenagmgsoztdf ?100 ;Jﬁ%epatljtths rlfé%.rtliatg ccsmlftfotlo
that of Fig. 8a), indicating a fairly linear response. produces a kink in the log—log pldtThe meaning of the
power exponentg, using a Fourier or wavelet baSis a
VIIl. SCALING AND NONLINEAR ANALYSES topic of current research. .
The second application is analogous to experiments done
Most of the research done by physicists in heart rate varito demonstrate the statistics of nuclear counting. A standard
ability has been done in the area of nonlinear dynamics anthethod for showing the Poisson statistics of nuclear count-
chaos. Physicists have contributed to the development dfg is to record data many times for a specific counting time.
mathematical methods using correlations, the correlation diThe mean number of count, and the standard deviation,
mension, fractal dimension, detrended fluctuation anaiysisl()', are calculated from the data. The students then determine
wavelets® entropy? for example, to obtain a better under- if o is equal to the square root &f within the limits of the
standing of the underlying complex dynamics of heart rate€xperiment. We can also repeat the experiment with different
control. Sometimes large data sets are needed for these cgRlues forN by changing the counting time or the source-
culations, and are best collected while the subject sleepdetector geometry. A graph of ldgversus logr should pro-
through the night. For a student exercise, 4000 data pointduce a straight line with slope 1/2, demonstrating that the
are sufficient to observe interesting results and can be colariability scales as\'? for radiation counting.
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Standard Deviation vs. N Cool-down (Lying Position)
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N Fig. 13. A plot of the heart rate in beats/min versus the respiratory sinus

arrhythmia amplitude as the subject cools down in the lying position after
exercise. The subject is breathing at 12 breaths/min. Time was started (
=0 min) a few minutes after the exercise was completed.

Fig. 12. Allog-log graph of the standard deviati@eversusN, the average
number of heartbeats.

A similar analysis can be performed with tRikinterval  yariability3! In the student lab, comparing the return map

times. From a series dkRinterval times, we can calculate fom RRinterval data to that of simpler systems would be an
the average number of heartbedts and its standard devia- jnstructive and interesting exercise.

tion, o, for a particular counting tim&,.. For example, take

T equal to 1 minute. One hour of data gives 60 numbergy HEART-RATE VARIABILITY AFTER EXERCISE
corresponding to the number of heartbeats for each of the 60

1 minute intervals. From these 60 numbers, we can calculate There are numerous examples in physics and biology for
the average and standard deviation. We then repeat the analyhich a system decay®r grows exponentially. Immedi-

sis using the same data, with a different counting time, andhtely after exercise the heart rate drops and after a while
consequently a differeril and o. In Fig. 12 we plot logN ~ reaches steady state. It is tempting to imagine that this decay
versus logr for 1 hour of RRinterval data. We have chosen is exponential, but there is no obvious reason to believe that

our shortest timd, to be 20 s, because this duration is justthe rate of change of theRinterval times is proportional to
above the period for low frequency oscillations. Fbg the difference between thBR time and its value in the

=20s, 1 hour of data gives 180 counting periods and thu§
good statistics. We have chosen the longest it be 250 not exactly exponentiaf

s, which givesN 250. ForT.=250s, 1 hour of data gives 14 | giead of examining the time change of only one variable,
counting intervals and the statistics become marginal. A% s petter to consider how two system parameters vary as
seen in the example of Fig. 12, a remarkable scaling relatioghe pody changes from one state to another. This approach is
results with a slope 0.75. We find that usually power lawyseq in' thermodynamics, in which the relation of macro-
scaling occurs, with slopes varying between 0.6 and 0.9. Acopic parameters gives information about the process that
slope of 1/2 results from random processes, and a slope ofthe system is undergoing. For example, if a gas undergoes a

occurs if the variability is proportional tdl. The heartbeat . asistatic process, R—V plot can be used to determine if
data lie somewhere in between these two values. The signif

f1h | £ th i health the process is isobaric, isometric, isothermal, adiabatic, or is
cance of the value of the scaling exponésiope to health o6 complicated. For the heart, the average heart(cate
and/or fitness is not known.

A hni in th vsis of i RRinterval timg and its variability are good parameters to
common technique in the analysis of nonlinear systems, i in order to identify the heart rate control process that is

is to plot a return map from a timg series. The classic Xaking place.

ample is that of a dripping faugé_tz in which a plot oft; As an example, in Fig. 13 we plot the average heart rate as
versust; ,; uncovers period doubling and a strange attractoly function of the respiratory sinus arrhythmia amplitude
when the faucet is dripping chaotically. The same approaciRSA) as the subject cools after exercise. The RSA is ap-
has been applied tBRinterval data. Usually the difference proximately proportional to the parasympathetic activity.
di=t;1—t; is plotted versusy; ,, wheren is some delay. Thus, for processes dominated by parasympathetic change,
Because the heart is a complex system with many factorghe heart rate will decreagder increasg and the RSA will
affecting theRRinterval times, a return map for a healthy increase(or decreasgin concert. In Fig. 13, the first 2 min-
subject generally produces a blob of points. Even if the subutes of the cool down and the last 45 minutes have this
ject breathes one breath evemheartbeats, a plot of; ver-  feature. The last stage, from 15 minutes to 1 hour, takes place
sus ., usually does not reveal any simple underlying dy-very slowly, and can be classified as a quasistatic process. To
namics. For subjects with heart problems, on the other handirst order inP, the RSA amplitude equaleP, wherek is a

a return map can vyield plots of distinctively different constant. Equatiofil) become®=mBy(1— (RSA)/K). Be-
shapes? Research is ongoing on how to make the techniqueause the process during the final 45 minutes is approxi-
of return maps more useful in the analysis of heart ratenately a straight line on the graph, this stage of the cooling

teady state. Exponential decay might be a good approxima-
on for certain time intervals, but it is found that the decay is
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Sy 0.1 volts for pin 3. Because the signal is very clean, the start
of the first cycle of the transmitted wave triggea 5 volt
output on pin 7.

1K1 - 8 The time between successive heartbeats can be measured
|_ | by sampling the output voltage on pin 7 of the chip. When
v~ , kT OUTPUT the voltage jumps to 5 volts, a timer_is read. Af_te_r a pause of
@LOOP / greater than 7 ms, the transmitted signal has finished and the
T3 b— voltage is back to zero. When the voltage jumps to 5 V
again, the timer is read. This process is repeated, and the
860 1 T ¢ 5— differences in the times are tfRRintervals. One can use the
T timer on a microprocessor or the system clock on a personal

— computer as a timer.
_ _ _ We use the parallel port to interface to a personal com-
Fig. 14. Chonne"t'onsl to the Cr?"]pafa“;' chip, M°‘°r°'§1 '-M33d4'h“3ﬁd ©puter. The chip ground is connected to pin 24 on the parallel
measure th&Rinterval times. The loop of wire is wrapped around the heart h . . .
rate monitor belt. The output is to the HC11 or the parallel port of a persona ort, and the chip output from p|r_1 71s .connect_ed to. pin 10 on
computer. he parallel port. Use of the PC timer is described in Ref. 33.
The RRinterval times are stored in an array and then saved
on disk after the measurements have ended.

When using the HC11, we use the input capture interrupt
: . : : : to detect the signal. We use interrupt service routines to de-
fit to this stage to obtain the physiological parameter%ect the signal, read the timer, and update the timer overflow.

mB, andP Tm”? Fhe Intercept and slope. Life science Stu'The RRinterval times are stored in an array and transferred
dents may find it interesting that the same methods of analy;

i d4'in ohvsical term n b lied to bioloai 5\13 a personal computer via the serial port after the measure-
zysstgi]es physical systems can be applied to biologicgl . s are made.

is isosympatheti¢that is,m is constant We can do a linear

X. SUMMARY ID. Eckberg, “Physiological basis for human autonomic rhythms,” Ann.
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